Introduction to Coastal Numerical Modeling

18 April 2018

Ir. Arman Mokhtar MIEM, P.Eng

Jabatan Pengairan dan Saliran, Malaysia Bahagian Pengurusan Zon Pantai

Outline of Presentation:

- Overview of hydraulic modeling study in Coastal Engineering
- Important Modelling Concepts based on DID Guidelines 2001
- Conclusion

What is Coastal Modeling?

- Simulating the coastal environment
 - Water level
 - Wind
 - Waves
 - Current (speed & direction)
 - Sediment transport

Coastal Modeling

- Physical Modeling
- Numerical Modeling
- Hybrid Modeling

Some Coastal Numerical Modelling Tools

All software models are almost the same!

Copyright by Mareteo

Why Numerical Modeling?

- Resource Constraints
 - Time
 - Money
 - Spatial Coverage

Why Need Coastal Modeling?

- Understanding hydraulic phenomena/ coastal impacts due to development (Erosion/sedimentation/sediment plume problems affecting project area).
- Planning and assessment of coastal development
- Develop possible strategy to alleviate problem wherever practicable.
- Monitoring feedback
- ➢ Etc....

Typical Scope of Works for Numerical Modelling:

- Collect and collate field data for the modeling study;
- Investigate the marine regime at the proposed project area taking into account the physical parameters within the area;
- Develop further understanding of the problem and identify the possible influencing factors leading to the problem;
- Carry out hydraulic modeling
 - to determine the current flows and sedimentation pattern within and around the project area;
 - as the input for permanent structure design;
- Identify possible strategy to alleviate the sedimentation problem.

Some Terms in Numerical Modelling:

- Hydrodynamic Modelling study of current and water level fluctuation
- Waves Modelling study of wave propagation, growth and decay of waves in nearshore area
- Sediment Transport Modelling study of cohesive & non-cohesive sediments while assessing bed level changes

General Numerical Modelling Concepts:

- Data Collection
- Model Set-up
- Offshore Wind/Wave Condition
- Hydrodynamic Simulation
- Calibration & Verification
- Wave/ Sedimentation Modelling
- Results

1. Bathymetry Data

🛃 start

C SELAT JOHOR BATSF

Paper A4, Scele 1:20,000

Hydrographic Survey

2. Tidal Data (Water Level Measurement)

3. Current Data

Current Speed (m/s)

Current Direction (*degree*)

Current meter measurement

- 3 days on each spring and neap at two (2) locations or more.
- Example:

Spring: 12/09/2011 - 15/09/2011

Neap: 20/09/2011 - 23/09/2011

Location	Coordinates	
	Latitude (N)	Longitude (E)
CM1	4° 24' 50.7"	100° 34' 36.1"
CM2	4° 26' 37.3"	100° 34' 58.2"

100

50

0-

12:00

2011-09-20

00:00

09-21

12:00

00:00

09-22 Time (Hours)

12:00

00:00

09-28

12:00

Location of measurements

Model Set-up

Hydrodynamic Model

A hydrodynamic model for simulation of water level variations and current flows in response to a variety of forcing functions. The water levels are resolved on a rectangular grid covering the area of interest. The system solves the equations of continuity and conservation of momentum using implicit finite difference methods.

Model Set-up

• Coarse Grid Model (590 x 1160 @ 270 m grid spacing)

<u>Model Set-up</u>

- Medium Grid Model
 - (405 x 270 @ 90 m grid spacing

Fine Grid Model

540 x 540 @ 10 m grid spacing

Local Grid Model

1440 x 990 @ 30 m grid spacing

Calibration & Verification

Calibration involves

- *Comparison of simulated and measured water levels and current velocity*
- Fine tuning and adjustment of model parameters to obtain good agreement between simulated and measured values

Verification involves

- *Comparing output of calibrated model against measured values (different location from calibration station)*
- Ensuring that the differences are within tolerable limits
- Average Differences: Current Speed/Direction = 20% / 20° Water Level = 10%

Calibration & Verification

Calibration Points

<u>Calibration</u>: Simulated vs Measured Current (ADCP)

Verification : Simulated vs Measured Current (ADCP)

Calibration & Verification

Simulated

VS

Measured

HD Simulation – Coarse Grid

Flooding

During **Ebbing**

0.5 m/s

(m/s)

0.4 - 0.5

Current speed

Above 0.9

0.8-0.9

0.7 - 0.8

0.6 - 0.7

0.5 - 0.6

0.3 - 0.4

Below 0.3

HD Simulation – Local Grid - Spring

Current Speed During High Tide

Current Speed During Low Tide

HD Simulation – Local Grid - Spring

Current Speed During Low Tide

Current Speed During High Tide

HD Simulation – Local Grid - Neap

Current Speed During High Tide

Current Speed During Low Tide

HD Simulation – Local Grid - Neap

Current Speed During Low Tide

Current Speed During High Tide

Proposed Options During Conceptual Stage

Option 1

Option 2

Option 3

Proposed Options: Option 3

Conclusion

Modelling Works enable us to:

- Study the dynamics of the site
- Assess the impacts to the coastal area
- Look for appropriate alternatives/ mitigative measures (at reasonable cost)
- Make decision based on best engineering practices (Decision making tools)

Thank You!