COLORIMETRY

E *i* M A S Institut Alam Sekitar Malaysia Environment Institute of Malaysia

Colorimetry - Take Home Messages

- Colorimetry is the measurement of color.
- The intensity of the color relates to the concentration in the sample, based on the instrument's calibration.

In a comparison measurement, consistency is key.

 Colorimetry Theory
How Does the Spectrophotometer Read a Sample?

Colorimetry is using color intensity measurements to determine the amount of a substance dissolved in solution.

 Measure samples with a colorimeter or spectrophotometer

Pour sample into a clean sample cell Rinse cell with sample before filling to volume

Add <u>reagents</u> to the sample, as indicated in the procedure

What do the Reagents Do?

Reagents + Sample

Colored Complex

Running the Test

Reaction time

Wait the amount of time specified in the procedure for reagents to react with sample and form color

Using the Instrument

Zero the instrument

- Sample Blank
 - Cell filled with sample, no reagents added

OR

Reagent Blank

 Cell filled with DI water to which reagents are added

Wipe sample cell clean, place into instrument, and touch the Zero key

Read the Sample

 After the reaction period, wipe sample cell clean, place into instrument, and touch the Read key

In this case, the sample absorbs very little of the incident light.

It is a low concentration sample.

Spectrophotometers

In this case, most of the incident light is absorbed by the sample.

It is a high concentration sample.

Spectrophotometers

Generate light energy

Select a specific wavelength of light

Pass the light beam through a sample

Measure the change in intensity of the light

 Convert change in light intensity to a displayed concentration

Light Source

Generates light energy Typically tungsten lamp

Produces white light - a mixture of all colors

Converts incoming white light to a single optimal <u>wavelength</u> for the test

- Diffraction Grating
- →LED

After wavelength is selected, light passes <u>through</u> the sample cell

Light passes through the sample cell, so it is important that the cell is clean.
Clean inside - acid or reagent
Clean outside - lint free cloth
No dust, fingerprints, scratches
Cells are sufficiently filled

 Detector measures the amount of light absorbed by the sample

Converts light energy to electrical energy

Instrument Reading

 Software calculates a concentration reading from the detector measurement using an internal calibration curve

 Calibration curve converts a measured light absorbance into concentration

COLORIMETRY