р H M E A S U R E M E N T

E *i* M A S Institut Alam Sekitar Malaysia Environment Institute of Malaysia

pH - Take Home Messages

PH is an electrochemical measurement, useful in many applications.

As with many electrochemical analyses, pH requires frequent calibration to achieve accurate results.

pH Measurement - Outline

 Introduction to pH and electrochemistry
Understanding pH
Measuring pH
Probe care and maintenance

pH Measurement

PH is typically measured with a meter and probe

This is an <u>electrochemical</u> method of analysis

What is Electrochemistry?

Electrochemical measurements include:

- ≁pΗ
- +Ion-selective electrode (ISE)

Understanding pH

pH Theory

 pH is a measurement of the relative acidity of an aqueous solution

PH is a measurement of hydrogen ion concentration

pH Theory

 <u>Acid</u> - increases the hydrogen ion (H⁺) concentration in a solution

 Base - increases the hydroxide ion (OH⁻) concentration in a solution

Measuring pH

7

How Does a pH Probe Work?

Probe measures hydrogen ion concentration

Two electrodes in probe sensing half-cell, reference half-cell

Dispenses reference solution which completes circuit for meter

H+

H⁺

H+

H⁺

H+

H⁺

pH 7 Solution

H⁺ conc the same both inside and outside glass bulb

*No potential develops

Hydrogen ion concentration fixed at pH 7

pH 7 Solution

H⁺ conc the same both inside and outside glass bulb

*No potential develops

pH 4 Solution

H⁺ conc 1000x greater outside glass bulb

*Potential develops

H+

H+

H+

pH 10 Solution

H⁺ conc 1000x greater inside glass bulb

*Potential develops

Hydrogen ion concentration fixed at pH 7

H+

H+

H⁺

 H^+ H^+

pH 10 Solution

H⁺ conc 1000x greater inside glass bulb

*Potential develops

A calibration curve allows the meter to convert a measured millivolt potential into a pH reading.

Probe Care and Maintenance

New probe Calibration Measurement/Storage Troubleshooting Cleaning

New Probe

Condition new pH probe in pH 7 buffer for approximately 30 minutes before initial use

Calibrate pH meters daily using two or three buffer solutions

7.0

4.0

Measurement

Place probe into sample, stir, and wait for readings to stabilize Rinse and dry between measurements Storage between measurements Sample or solution of similar ionic strength to sample

→pH7 buffer

Troubleshooting

mV reading in pH 7 buffer Should read 0 ± 30 mV in pH 7 buffer Response time May require cleaning if slow in buffered solution Slope Optimal slope is -58 ± 3 mV/decade

Cleaning

Slow response may indicate need for cleaning

 Alternate soaking in dilute hydrochloric acid and dilute sodium hydroxide

Rinse with deionized water

Condition in pH 7 buffer before use

pH-Take Home Messages

pH is an electrochemical measurement, useful in many applications.

As with many electrochemical analyses, pH requires frequent calibration to achieve accurate results.

Proper probe maintenance is essential.

р Н М E A S U R E M E N T