


PROCESS STREAMS	19	20	21	22	1	2	*3	4	*5	*6	*7	8	9	10	11	12	13	14	15	16	17	18
IDC FLOW (m3/hr)	40	19	150	140	192	192	102	301	59	360	949	109	1418	10	6.8	3.2	3.2	0.15	0.5	7.3	-	
FDC FLOW (m3/hr)	80	37.5	300	280	700	700	221	921	51	973	949	109	2031	20	13.7	6.3	6.3	0.3	0.8	14.5		
FDC FLOW WHEN STORM WATER FROM NUF/FDG HAVING Mn > 1.0 ppm (m3/hr)	80	38	300	280	700	700	221	921	51	973	-	109	2031	20	14	6	6	0	1	15	949	949
COD (ppm)	600 - 1200	600 - 1200	600 - 1200	600 - 1200	600 - 1200	600 - 1200	0	600 - 1200	0	<200	0	0	<200									
BOD (ppm)	115	115	115	115	115	115	0	115	0	<50	0	0	<50	-	-	-	-	-	-	-	-	
SS (ppm)	150	150	150	150	150	150	0 - 50	100 - 150	0 - 50	<100	0 - 50	0 - 50	<100	5000 - 8000	0 - 50	15000	15000	250000	0 - 50	0 - 50	-	-
рН	7	1	1	1	11.8	7	7	7	7	7	7	7	5.5 - 9.0	7	7	7	7	7	7	7	7	7
TEMPERATURE (°C)	< 40	< 40	<40	< 40	< 40	<40	< 40	< 40	<40	< 40	< 40	<40	<40	< 40	< 40	< 40	<40	< 40	<40	<40	< 40	<40

NOTES

IDC = INITIAL DESIGN CASE

FDC = FINAL DESIGN CASE

* STANDS FOR MAX VALUE DURING MONSOON SEASON

Source: Lynas 2018

The BFD and mass balance of the proposed secure landfill's IETS

Project:

Proposed Onsite Secure Landfill (Prescribed Premise) for the Storage of NUF Solids within the Existing LAMP Site located on PT 17212, Gebeng Industrial Estate, Kuantan, Pahang

Project Proponent:

Lynas Malaysia Sdn. Bhd.

Consultant:

Job No.:

AGV-MY-R37-0145

Date: Dwg Size: A3
Scale: Dwg No.:

e: As Shown

Figure 5.17