Appendix 14

Project : PERMOHONAN KEBENARAN MERANCANG BAGI CADANGAN MENDIRIKAN SEBUAH KILANG KERTAS (FASA 1) DAN KOMPONEN SOKONGAN DI ATAS SEBAHAGIAN PT 441, MUKIM PADANG MEHA, DAERAH KULIM, KEDAH DARUL AMAN.

Client : XSD INTERNATIONAL PAPER SDN BHD
Ref. No. 0919/HC/01/WC
Date 14/03/2019
Subject Hydraulic Calculations [Urban Stormwater Management Manual for Malaysia 2]

Introduction

The proposed location is located at sebahagian pt 441, mukim Padang Meha, Daerah Kulim.
The purpose of this calculation is served to check the discharge (Q) of this development and confirm the excess discharge of this development will not affect and upset the surrounding drainage system.

This design calculation is based on latest version of MSMA $2^{\text {nd }}$ edition (Updated 23 MAY 2013)

DESIGN DATA

STATE

STATION NAME

LAND USE

CATCHMENT AREA

UPPER CATCHMENT AREA

TOTAL CATCHMENT AREA
$=$ KEDAH DARUL AMAN
= IBU BEKALAN SG. KULIM
$=$ FLAT
$=404686 \mathrm{~m}^{2}$
$=\quad 0.00 \mathrm{~m}^{2}$
$=404686.00$
Or 40.4686 Hectares(Ha)

CONTRIBUTION DEVELOPMENT AREA

Sub-catchment Area	$=78524 \mathrm{~m}^{2}$			
	Or		7.85 Hectares(Ha)	
Impervious Area (Covered Up)		=	$70672 \mathrm{~m}^{2}$	90\%
	Or		7.07 Hectares(Ha)	
Pervious Area (Open Space)			$7852 \mathrm{~m}^{2}$	10\%
	Or		0.79 Hectares(Ha)	

DETERMINE TIME OF CONCENTRATION

Time of Concentration For Post-Development Where,

Overland Sheet Flow Travel Time

Overland Sheet Flow Path Length

Hortons roughness Value for
The Surface
Slope of Overland Surface
Therefore, T_{o}
$\mathrm{N}=\quad 0.02 \mathrm{PAVED}$
Table 2.2
$\mathrm{S}=0.005 \%$
$=14.87$ Min

Where,

Travel Time in the Drain

Manning's Roughness Coefficient
Length of Drain

Hydraulic Radius

Friction Slope

Therefore, T_{d}

Therefore, T_{c},
Critical Time of Concentration for
Post development
$T_{d}=N L / 60 R^{2 / 3} S^{1 / 2}$
$\mathrm{N}=\quad 0.015$ CONCRETE
Table 2.3
$\mathrm{L}=957.00 \mathrm{M}$
$\mathrm{R}=0.471$
$\mathrm{S}=0.0010$
$=12.49 \mathrm{Min}$
$\mathrm{T}_{\mathrm{c}}=27.36$

Determine $Q_{\text {(aPost) }}$ for the Post-Development Condition

Empirical equation can be used to minimise error in estimating the rainfall intensity values from the IDF curves.
The following equation adopted from Hydrological Procedure (HP) No. 1 revised based on MSMA 2

$$
\mathrm{I}=\Lambda \mathrm{T}^{\mathrm{k}} /((\mathrm{d} / 60)+\Theta)^{\mathrm{r}}
$$

Where $\quad I=$ Average Rainfall Intensity $(\mathrm{mm} / \mathrm{hr})$
$\mathrm{T}=$ Average recurrence interval $-\mathrm{ARI}(0.5<\mathrm{T}<12$ month and $2<\mathrm{T}<100$ year $)$
$\mathrm{D}=$ Storm duration (hours), $0.0833<\mathrm{d}<72$
Variables $=$ Fitting constant dependent on the raingauge location (Table 2.B1 Appendix 2B)

Using the Rational Method

Development Data		Post Development				
Design Storm ARI for Post-Development, T	Year	2	5	10	50	100
Time of Concentration, T_{c}	Min	27.36	27.36	27.36	27.36	27.36
IDF Constant	λ	57.832	57.832	57.832	57.832	57.832
	K	0.188	0.188	0.188	0.188	0.188
	\ominus	0.245	0.245	0.245	0.245	0.245
	π	0.751	0.751	0.751	0.751	0.751
Rainfall Intensity, I	$\mathrm{mm} / \mathrm{hr}$	86.02	102.19	116.42	157.55	179.48
Runoff Coefficient,C		0.90	0.90	0.90	0.95	0.95
Catchment Area, A	Hectares	7.85	7.85	7.85	$\mathbf{7 . 8 5}$	7.85
Design ARI Peak Flow, $\mathrm{Q}_{\text {(a Post) }}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathbf{1 . 6 8 8 7}$	$\mathbf{2 . 0 0 6 2}$	$\mathbf{2 . 2 8 5 4}$	$\mathbf{3 . 2 6 4 7}$	$\mathbf{3 . 7 1 9 1}$

Therefore,
The Peak Flow for 2 Year ARI
The Peak Flow for 5 Year ARI
The Peak Flow for 10 Year ARI
The Peak Flow for 50 Year ARI
The Peak Flow for 100 Year ARI

Q_{2}	$=$	$\mathbf{1 . 6 8 8 7} \mathrm{m}^{3} / \mathrm{s}$
Q_{5}	$=$	$\mathbf{2 . 0 0 6 2} \mathrm{m}^{3} / \mathrm{s}$
Q_{10}	$=$	$\mathbf{2 . 2 8 5 4} \mathrm{m}^{3} / \mathrm{s}$
Q_{50}	$=$	$\mathbf{3 . 2 6 4 7} \mathrm{m}^{3} / \mathrm{s}$
Q_{100}	$=$	$\mathbf{3 . 7 1 9 1} \mathrm{m}^{3} / \mathrm{s}$

DRAIN SIZE Computation : Manning Formula		
Type of drain is Concrete Drain		
Proposed Drainage Width,m	=	1.8 M
Proposed Average Drainage Height,m	$=$	1.80 M
Area of Drainage A,	A =	$2.545 \mathrm{~m}^{2}$
Wetted Perimeter of Drainage, P	$\mathrm{P}=$	5.4 M
Hydraulic Radius, $\mathrm{R}=\mathrm{A} / \mathrm{P}$	$\mathrm{R}=$	0.471
Friction Slope, S	S =	0.001
Mannig Coeeficient, n	$N=$	0.013
Flow, $\mathrm{Q}_{\text {all }}$	$\mathrm{Q}_{\text {all }}=$	3.7493

The Peak Flow for 2 Year ARI	Q_{2}	$=$	$\mathbf{1 . 6 8 9}<$ Qall	ok!
The Peak Flow for 5 Year ARI	Q_{5}	$=$	$\mathbf{2 . 0 0 6}<$ Qall	ok!
The Peak Flow for 10 Year ARI	Q_{10}	$=$	$\mathbf{2 . 2 8 5}<$ Qall	ok!
The Peak Flow for 50 Year ARI	Q_{50}	$=$	$\mathbf{3 . 2 6 5}<$ Qall	ok!
The Peak Flow for 100 Year ARI	Q_{100}	$=$	$\mathbf{3 . 7 1 9}<$ Qall	ok!

Qall is greater than Q2, Q10 \& Q100, therefore design drainage is OK

Reference	Calculation		Output
		Units	Units
Figure 5.A1 (MSMA2)	Region	3 - NORTHERN	
	Project Area	40.47 ha	
	Terrain	Mild	
	Catchment Area	40.47 ha	
	Impervious Area	$=\quad \begin{array}{r} 303515 \mathrm{~m}^{2} \\ (30.3515 \mathrm{ha}) \end{array}$	
	Pervious Area	$=\quad \begin{array}{r} 101171 \mathrm{~m}^{2} \\ (10.1171 \mathrm{ha}) \end{array}$	
	\% of Impervious Area	$=\quad 75 \%$	
$\begin{aligned} & \text { Table 5.A1 } \\ & \text { (MSMA2) } \end{aligned}$	Permissible Site Discharge (PSD)/ha: For area of 40.4686ha, PSD $=40.4686 \times 69.9$		$\begin{gathered} 69.9 \mathrm{l} / \mathrm{s} / \mathrm{ha} \\ 2828.76 \mathrm{l} / \mathrm{s} \end{gathered}$
Table 5.A1 (MSMA2)	Site Storage Requirement (SSR)/ha:		$\begin{aligned} & 454 \mathrm{~m}^{3} / \mathrm{ha} \\ & 18372.74 \mathrm{~m}^{3} \end{aligned}$
	For area of 40.4686ha, SSR =	40.4686×454	
	The required storage is 18372	4m3	

Determine Storage Dimension

Propose volume of OSD
I) OSD
a) Detention pond

width	$=$	102 m
length	$=$	195 m
Height	$=$	1.2 m
ge	$=$	$23868.00 \mathrm{~m}^{3}$

Therefore,
Total capacity of storage

$$
\begin{array}{lrl}
= & 23868 \mathrm{~m}^{3} & \\
\geq & 18372.74 \mathrm{~m}^{3} & \text { O.K. }
\end{array}
$$

Sizes of Outlet Orifice

Project Area :	$=$	40.47
Impervious Area :	$=$	75.0%
(Covered Up)		
From Table 5.A.3 (MSMA 2) Orifice Size of	$=$	600 Mm
outlet flow		

Conclusion

The On-site detention pond and drainage system to control the discharge.
The discharge generated by this development onto the existing drainage system will be retained at the proposed drain and flow through the outlet opening.
Therefore, the excess discharge created by this development will not affect and upset the surrounding drainage system.

