Technical Guidance Series Number: DOE-CP-2

Cleaner Production Tips For Small and Medium Industries

Department of Environment, Malaysia

First Edition 2011

Cleaner Production Tips for Small and Medium Industries

ISBN 978-983-3895-22-9

ISBN 978-983-3895-22-9

Cleaner Production Unit

Department of Environment, Malaysia

Copyright © Department of Environment, Ministry of Natural Resources & Environment, Malaysia

FIRST EDITION 2011

Contents

Contributors		iii
Foreword		iv
Editor's Note		vi
Disclaimer		vii
Further Inform	mation	viii
CHAPTER 1	About This Book	1
CHAPTER 2	The Need For CP Options	5
CHAPTER 3	The Categories Of CP Options	7
CHAPTER 4	Evaluating CP Options	9
CHAPTER 5	Focus of CP Options Generatio	13
CHAPTER 6	General CP Options Principles	15
CHAPTER 7	CP Options Through Various Methods	19
CHAPTER 8	CP Tips for Electricity Saving at a Premise	23
CHAPTER 9	CP Tips for Heat Energy Saving at a Premise	51
CHAPTER 10	CP Tips for Water Saving at a Premise	67
CHAPTER 11	CP Tips for Material Saving at a Premise	81
CHAPTER 12	General CP Options	93

ii

Contributors

Dr. Ir. Shamsudin bin Hj. Ab. Latif Department of Environment, Malaysia

Ramli Abd. Rahman Department of Environment, Malaysia

Narimah Md. Saad Department of Environment, Malaysia

Noorazehan Baharum Department of Environment, Malaysia

Noraini Baharom Department of Environment, Malaysia

Mohd. Radzi Mawi Department of Environment, Malaysia

Ir. Dr. Abdul Aziz Abdul Raman Department of Chemical Engineering, University of Malaya

Razuana Rahim Dasar-Data Sdn. Bhd.

Raja Shazrin Shah Raja Ehsan Shah Dasar-Data Sdn. Bhd.

Foreword

"Cleaner Production Tips for Small and Medium Industries" is intended to facilitate implementation of Cleaner Production (CP) in Small and Medium Industries. I am delighted that this book is being published among many other materials by Cleaner Production Unit, Department of Environment (DOE), Malaysia. The options given in this book are generated from various CP audits and visits conducted by DOE and through available literature.

Cleaner Production practices have become a necessity since the Malaysian government has expressed its commitment to reduce carbon footprint to the international community to overcome global warming issues. Therefore, DOE has taken a leading role in motivating and promoting the CP initiatives with focus on SMEs. In implementing CP initiatives, DOE is taking a pro-active approach where its officers are being trained to become advisors and not only as enforcement officers. It is my sincere hope that the Malaysian industries will rise to the challenges of implementing Cleaner Production options and this book could be helpful in meeting more challenges. DOE will continue to take many more initiatives in promoting Cleaner Production,

Good luck!

Yours Sincerely;

Dato' Hajah Rosnani binti Ibarahim Director General Department of Environment Malaysia

April 2011

Editor's Note

This book can be used as a guide to facilitate CP option generation for Small and Medium Industries. It outlines the general framework and methodologies necessary to systematically generate CP options. Options are given in a very generic form and not constrained to any specific industry. Some of the examples here may or may not be applicable but could be used as an example or starting point.

The simplified and generic examples of options will make them applicable for many industries. The materials and information developed herein is intended to cater a broad spectrum of users and may not entirely be relevant for your purpose. Some sections may require some alterations to suit the requirements of a particular premise.

Following aspects will be covered in this book:

- Description of the option.
- Tips to implement the option will be described if information is available.
- Precautionary steps required in implementing the options will be also given to the users as much as possible.
- All the possible benefits from implementing the options will be included.
- Wherever available, success stories related to a particular CP options will be given.

The contributors of this book welcome any feedback and if possible, the feedback will be taken into consideration for future updates.

Ir. Dr. Abdul Aziz Abdul Raman

Disclaimer

Please note that the information provided in the "CP Tips for Small and Medium Industries" are recommendations only and the implementation are the responsibility of the readers. Care must be taken in implementing the options. Department of Environment, Malaysia shall not be liable for any loss or damage incurred due to the usage of the CP options contained in this book. Please be advised that you should also verify the accuracy of any information before implementing any options.

Further Information

Further clarification and information regarding the CP options can be obtained by contacting the Cleaner Production Unit at Department of Environment. The contact details are as follows:

Cleaner Production Unit Department of Environment Ministry of Natural Resources and Environment No. 25, Persiaran Perdana, Precint 4, Level 1- 4, Podium 2 & 3, Lot 4G3, Precinct 4 62574 PUTRAJAYA, MALAYSIA. Telephone No. : +60 - 3 - 8871 2000 Fax No. : +60 - 3 - 8881 0920 e-mail : cpsupport@doe.gov.my Cleaner Production Tips for Small and Medium Industries

1

About This Book

Cleaner Production (CP) implementation programmes may face some difficulties initiating ideas for option generation. Once an issue has been identified, a good starting point is a clear definition on the emphasis and specific objective of an option. In other words, one should start by asking **What is the issue (problem)?** followed by **What needs to be done?** and finally **How it can be done?** These leading questions will guide readers to generate options for specific issues identified systematically.

The CP options included in this book will be grouped by its focus or emphasis for clear representation and easy understanding. The main focus areas are reduction in the consumption of water & energy and reducing waste generation.

(a) Options to reduce water consumption

Water consumption is emphasized because many industries consume large amounts of water and many more consume water above benchmark levels. In most cases, water consumption is directly related to wastewater generation. Therefore, the importance of this emphasis stretches over a area from reducing environmental vast impacts to maintaining monetary sustainability. The following illustration gives simple idea on the direct and indirect benefits of reducing water consumption.

Reduce water consum	nption and thus		\mathbb{N}
Direct cost of water consumption is reduced Smaller utility infrastructure required	wastewater generation Cost for treatment, handling and processing of wastewater is reduced Sludge generation is reduced	on is reduced and thus impact is reduced Smaller carbon footprint	

Figure 1.1: Direct and indirect benefits of reducing water consumption

The reduction in water consumption will reduce wastewater generation and thus lower cost of treatment and sludge generation. All these activities will contribute positively for carbon footprint reduction.

(b) Options to reduce energy consumption

Globally, industries consume about one third of the energy produced which contributes to about 36% of CO_2 emission. In Malaysia, energy wastage is one of the highest ranked losses compared to any other waste. Major contributors can be identified as inefficient and poor power management. Even though energy costs in Malaysia is still relatively low in the global standing partly due to subsidy, increase in power generation and fuel costs validates the emphasis to reduce energy consumption. Industrial and commercial use of energy contributes to more than half of global energy consumption.

Energy Consumption Trends

Figure 1.2: Energy Consumption Trends

Main uses of energy in the industry include heating & cooling, motors, steam generation, compressors and lighting. Therefore, energy consumption is a significant component contributing to both environmental impact and cost incurring resources which require much focus.

(c) Options to reduce waste generation

Waste generation other than wastewater will be grouped together because there are wide varieties of wastes. This includes raw material and product loss/waste, other solid and schedule waste or any other gaseous, liquid or solid materials discarded as waste, sludge from waste water treatment plant, rejected products and packaging materials. These wastes typically require extensive handling and majority end up in incinerators and landfills. A general approach to generate options for this aspect is more

4 CP Tips for Small & Medium Industries

challenging because of the wide variety, nature and compositions of the wastes involved. The best strategy is a thorough industry dependent approach.

2

The Need for CP Options

Cleaner Production is primarily implemented to reduce material and energy wastage which will in turn reduce impacts, increase efficiency and eventually reduce carbon footprint. Furthermore, the premise can also benefit in more aspects which will increase productivity and profit. Among the benefits are as follows:

Figure 2.1: Benefits of CP

6 CP Tips for Small & Medium Industries

In summary, implementation of CP is capable of providing multiple benefits to the premise. The tips suggested in this book are only a fraction of options available and many others can be generated with proper understanding of CP.

A major step in the implementation of CP is the CP audit which will provide baseline information on the material & energy consumption and waste generation based on the current practices in the premise as well as the equipment. The outcome and findings of the audit process is carefully analysed so a realistic CP target can be defined. This important information will give a clear standing on the opportunities and challenges involved and allow CP auditor to set targets and generate options to achieve these targets.

A simplified diagram of the CP implementation programme below shows where the option generation step stands.

Figure 2.2: Steps in a Cleaner Production Programme

3

The Categories of CP Options

In conjunction to the baseline information obtained from the CP audits, CP outcomes or targets can be defined by giving emphasis to the specific focus groups (i.e. reduce water consumption, reduce energy consumption, or reduce waste generation). The appropriate approach need to be carefully considered for generating CP options. While environmental impact and carbon footprint reduction might be the ultimate targets for CP options, industries are generally more receptive to options that reduce operating cost and increase profit. In addition, it is not sufficient that an option promises savings and/or profits, it must also do so within an attractive period of time.

CP options implementations can be classified into six categories. Based on the experience of the author of this book, the typical cost requirement in many industries can be summarized as given in the Table below:

Туре	Investment required	Rate of return	Typical Percentage of CP Options under this category
1	No	Immediately	~15- 30 %
2	Small	1-6 months	~10- 20 %
3	Significant	1-6 months	~5- 10 %
4	Moderate	1-3 Years	~5-10 %
5	High	More than 3 years	~5- 10 %
6	Significant/ High	No monetary return	~10- 20 %

Table 3.1: Typical Cost Requirement for CP Options Implementation

For each option that will be described in this book, the category of CP options will be indicated. With the help of the category, the premise could make decision on prioritising the CP options according to the need and return expected.

4

Evaluating CP Options

Evaluating CP options is an important step before deciding the options to be implemented. The following format is recommended to identify and/or prioritize the CP options to be implemented.

lssues	:		
Area	•		
Source &/or reasons	:		
Option	•		
Category of option	:		
	:	Type of challenges	Tick $$
		No expertise	
Dessible shellenges		Top management's commitment	
Possible challenges		Production cannot be stopped	
		Too risky	
		May have effect on quality	
	•••	Input required	Tick $$
		1. Technology	
		2. Manpower	
		3. Training	
Input required		4. Awareness	
		5. Process Change	
		6. Operation parameters change	
		7. Material change	
		8. Design change	
		9. Standard operating procedure	
		10. Monitoring	
		11. Additional control	

CP OPTION EVALUATION FORM

10 | CP Tips for Small & Medium Industries

Input required		12.	R&D	
(cont'd)		13.	Approval from authorities	
	:		Item	Amount
				Required (RM)
		1.	Electrical work	
		2.	Purchasing equipment	
Investment Cost		3.	Construction work	
		4.	Shut Down loss	
		5.	Man power cost	
		6.	Cost of financing	
		7.	Others	
			Total (A)	
	:		ltem	Amount
		1	Mannower	Required (RM)
Additional operational		1.	Flectricity	
cost due change/		2.	Stoom	
(monthly rate)		J.	Fuel	
		т. Г	Meintenenee	
		э. С		
		б. - 7	Ireatment	
		1.	Others	
			I otal Cost (B)	Couring (DM)
	•		item	Saving (RW)
		1.	Man power	
		2.	Steem	
Saving		3. 1	Fuel	
(monthly rate)		5.	Maintenance	
		6.	Treatment	
		7.	Others	
			Total Saving (C)	
Payback period	:		A/(C-B) months	
	:		Benefit Type	Tick $$
		1.	Improved quality	
Other possible benefits		2.	Improved images	
		3.	Safer operation	
		4.	Less riskier operation	
		5.	Better motivation	
		6.	Better working environment	
		1.	Lesser environmental issues	

Other possible benefits		8. Reduction in carbon footprint	
(cont'd)		9. Others	
	:	Merit	Tick $$
Merit of implementation		Implement immediately	
		Implement within six months	
		Implement only if finances are available	
		Keep it as future plan	
		Drop it for at least 10 years	
		Ignore	
Documentation	•••	Type of documentation	Tick $$
required if implemented		Paper documentation	
required in implemented		Video documentation	
Monitoring plan (describe)	:		
Prepared by	:		
Confirmed by	:		

12 | CP Tips for Small & Medium Industries

***** This page was left blank intentionally *****

5

Focus of CP Options Generation

Cleaner Production implementation programmes generally targets carbon footprint reduction. However, this eventual target must be preceded by other intermediate output such as reduction or saving in cost and many other outcomes which are described in **Chapter 3**.

Typically, CP options also focuses on opportunities on saving energy, material and improve safety aspect.

Savings in energy include reducing consumption and minimizing wastage for electrical and heating & cooling. Material savings include reduction in consumption of raw and other materials (packaging, treatment chemicals, fuel, water, cleaning chemical and others); and minimize waste generation in terms of quantity and quality (water solid and others). The safety aspect is also included in CP concepts because issues resulting from safety mismanagement will result in loss of material and energy at varying degrees. So, preventing safety related incidences are potential material and energy savers.

Within industrial premises, the common methodology to achieve the desired CP outcome is generically described in **Chapter 7**. The methods include housekeeping, change of material, design modification, operational modification, application of new technologies, staff training and recycle &

14 CP Tips for Small & Medium Industries

reuse. These methodologies can be utilized to identify a specific option for any of the entities chosen.

Theoretically one can generate unlimited number of options in a typical premise. Many examples will be given in Chapter **8**, **9** and **10**. However the underlying principles in generating option for each entity can be summarized into few basic principles. These principles are explained in Chapter **6** and the respective example will be given in subsequent Chapters.

It is very important for the CP implementers to understand the thought process involved in generating and evaluating CP options. The overall thought process is demonstrated in Figure 5.1. below:

Entities targeted	Principles of CP option generation	Implementation methodology	Intermediate output	Eventual output
-Energy -Material -Safety	-Change T* -Change t* -Change P* -Others	-Housekeeping -Design modification -Operational modification -Change of raw material -New technologies -Staff training -Recycle & Reuse	-Direct cost reduction -Improve product quality -Reduce waste generation -Reduce energy consumption -Reduce risk -Improve reputation -Others	-Carbon footprint reduction -Reduce environment al impact -Others
FOCUS	OPTION G	ENERATION/ ESIGN	TARGETS AND O ACHIEVAN	UTCOMES BLE

Figure 5.1: CP option generation process

6

General CP Options Principles

For each methodology mentioned in Chapter 5, there are underlying principles that can be used for generating CP options. From these underlying principles, many specific options can be generated. The underlying principles for each entity are as follows:

6.1. Energy

6.1.1. Electrical

6.1.1.1. Reduce time of consumption

For electrical consumption, reducing time of consumption should be targeted as the first choice of CP option because it is one of the easiest principles to be implemented. By reducing time of usage kWhr consumption will be lower as total consumption of electricity is given by formula below:

Consumption = rating of the electrical appliances (kWhr) (kW) X usage time (hr)

6.1.1.2. Use appropriate capacity

Overcapacity (for kW rating) or over-sizing results in energy wastage. One may need to evaluate the appropriate capacity (kW) of the appliances needed for the task at hand and

16 CP Tips for Small & Medium Industries

reduce it accordingly. One more aspect is the speed of the electrical motors which are operated. Higher speed operation results in higher energy consumption. This can be managed through use of simple control measures.

6.1.1.3. Use of appropriate materials and/or technology

Electrical appliances of the past can be massive energy consumers and waste a lot of energy. Due to advances in technology and environmental consciousness, many energy saving electrical appliances are available in the market. Using newer and more energy efficient material and/or technology are a basic principle for generating many energy saving CP options.

6.1.1.4. Use of renewable energy

Wherever possible, use of renewable source such as biofuel, solar, wind and geothermal energy should be considered because the production of these energies have smaller carbon footprint.

6.1.2. Heating & Cooling

6.1.2.1. Reduce time (of process)

Reducing process time for processes that involves heating and cooling will reduce energy consumption because energy consumption is directly proportional to process time.

6.1.2.2. Reduce/increase temperature

Heating and cooling process consumes energy to change the temperature of a process stream or product. By reducing/increasing the set temperature the energy requirements will be reduced due to shorter temperature gradient.

6.1.2.3. Recovery heating/cooling energy

Hot/cold streams still contain energy which possesses opportunity for energy that can be recovered. Energy recovered will supplement and thus reduce overall heating/cooling requirements.

6.1.2.4. Use renewable energy

Similar to electrical energy, renewable source such as biofuel, solar, wind and thermal energy should be considered because these energies have smaller carbon footprint producing sources.

6.1.2.5. Use of appropriate materials

Appropriate material selection is important because the material type, design and features attribute to the efficiency of energy usage. For example, material type and shape of the heating or cooling coil of heat exchangers determine the heat transfer coefficient and hence the efficiency of the operation.

6.1.2.6. Eliminate material loss

Large amount of energy may be loss through material discharged to the environment. For example, steam that contain large amount of energy must be prevented from being lost to the environment through leakages.

6.2. Material

6.2.1. Prevent loss of material

Material loss through leakages, incomplete reaction or other ways contribute to waste generation, unnecessary overconsumption and more importantly (to the industry) additional costs incurred. As such, even though the identification of sources for material losses may be exhaustive, it should not be overlooked.

6.2.2. Maximise usage of material

An important principle in CP is maximising material use. This can come in many forms which include but is not limited to reuse, recycle and even finding markets for byproduct and waste material (which will be used in other premises). This will directly reduce waste generation and reduce new material consumption. Maximising product output by minimising off-spec product must be also instituted by the premise.

6.2.3. Material with less impact to environment

Alternative materials are constantly being developed as supplement and substitute to current materials with added features like improved activity, increase yield, reduce energy requirement and increased stability (i.e. inert, less toxic). Application of this principle will eventually lessen environmental impact for a particular process or premise.

6.3. Risk Management

6.3.1. Minimise/eliminate probability of the risk from happening

Potential accidents and mishaps can be identified within a premise. By finding the root cause for these potential occurrences, countermeasures can be identified thus reducing the probability for occurrence. In the CP concept, an accident is always viewed as carbon footprint producing events.

6.3.2. Minimise/eliminate severity of consequence

After the probability of a risk from occurring are minimised as much as possible, attention must be focused to find opportunities to reduce severity of an occurrence. This will reduce possible losses, which include material loss or damage, loss of resources, injuries to workers or even loss of lives.

7

CP Options Through Various Methods

The CP options available are very diverse and can range from minor operation change to major design modification or technology change. However, they principally can be grouped by the methods of implementation. There are seven methods that are commonly used in the industries as follows:

1. Housekeeping

Housekeeping can take many forms but are mainly focused on preventing material & energy losses, minimizing waste and improving operational & organizational procedures. Housekeeping items are first in the list of CP options because the implementation of these options usually require low capital investment with faster or even immediate return. Thus, this method is surely stands front runner for implementing CP. Some of the housekeeping activities are as follows:

- Keep premise clean
- Repair leakages
- Keep equipment dry
- Do not mix waste
- Label items properly
- Do not overstock raw material
- Careful with expiry date
- Scheduled maintenance of equipment

It is proven that in some cases good housekeeping can reduce up to 30% waste and improve general productivity. Normally it does not take much effort to implement.

2. Design modification

Design modification can range from minor alteration to major design modification. For example, a minor adjustment by incorporating a simple chute system may reduce or even eliminate spillage of a solid material being conveyed into a container, whilst alternatively major modifications can be implemented which may involve replacement of unit operation or acquiring new process lines. Depending on the industry, some design modifications may require in-depth technical knowhow and a thorough study to be conducted before a suitable option can be designed.

In some cases CP options that involve design modifications require a thorough study to be conducted and an in-depth technological knowhow.

3. Operational modification

Operational modification refers to changes or optimization of processing parameters that involve time, temperature, pressure, sequence and many other relevant parameters. For example, by reducing operating time energy consumption can be reduced. Another example is combining two activities into one unit operation or eliminating a step altogether. More detailed examples can be found in preceding chapters.

4. Change of raw materials

Changes in raw material are commonly considered to resolve some of the issues. Then substitute raw materials may be considered to achieve the following:

- To obtain higher yield
- To lower production and/or processing time

- To generate less waste
- To generate more benign by-products or waste
- Easy handling (Less toxic materials)
- Lower energy consumption (i.e. for handling, production and storage)

5. Use of alternative or new technologies

Newer technology may be considered if they can improve productivity, reduce material loss, reduce waste generation, produce more benign waste or reduce energy consumption. The new technologies may be incorporated into an existing system as a supplement, or they may replace entire system or part of a system. More detailed examples can be found in preceding chapters.

6. Staff Training

Studies have shown that untrained staff can lead to higher waste generation, reduced productivity and increasing risk. One way to implement CP is to train the staff in required areas. Training is also required when CP is implemented by changing Standard Operating Procedure or where design and/or operational modifications have been made.

Picture above shows factory staff being trained in-house and on-the-job.

7. Reusing and Recycling

Reusing and recycling are two sure way of implementing CP. It could be a cheap or an expensive CP options to be implemented.

8

CP Tips for Electricity Saving at a Premise

8.1. Detail Options

TIPS 1/ELECTRICITY

Option	:	Installation of automatic shutoff/open switch.
Description	:	Equipment which is not in use/not required should be switched off. However in many industries this is not done as switching off is done manually. Incorporating shut off switch coupled with a timer may save electricity.
Application	:	Lighting systems, air-conditioning systems, motors for specific application (i.e. conveyor, escalators).
Outcomes	:	Reduce direct electricity cost by preventing wastage.
	-	Reduce carbon foot print (on the average 0.59 kg CO_2 is emitted per kWh of electricity generated ^[1]).
	•	Reduce Life Cycle Cost (LCC).
		Lengthen equipment life.

24 | CP Tips for Small & Medium Industries

Methodology	:	Automatic switches can be easily
		retrofitted onto control panels and
		switch-boards.
Tips	:	Normally the shut off/open switches
		can be attached with a sensor as well.
		For example lights can be attached
		with light intensity sensor.
Category of	:	Small investment and return within 6
option		months.
Financial	:	Estimated savings can be calculated
consideration		using the following formula:
		Saving (RM) = total kW for total
		duration of shutdown x RM0.30

Pictures /diagram

Above are some examples of automatic switches

Other relevant	:	Motors can be also fitted with timers
information		or any other relevant sensor (like pH
		sensor in the waste water treatment
		plant).
		- <i>i</i>
References	:	[1]. U.S. Department of Energy's

TIPS 2/ELECTRICITY

Option :	Install motor efficiency controller.
Description :	It improves the efficiency of electric
	motors operating at constant speed
	and under variable loads by
	continuously monitoring the power
	consumption of the motor and
	reduces the voltage when the motor
	load decreases.
Application :	Motors for various applications (i.e.
	pumps, homogenizers, compressor
	drivers, escalators drivers, convey
	drivers).
Outcomes :	Reduce direct electricity cost by
	preventing wastage and increasing
	motor efficiency.
	Reduce carbon foot print (on the
	average 0.59 kg CO_2 is emitted per
	kWh of electricity generated ^[1]).
	Reduce Life Cycle Cost (LCC).
	Increases motor lifetime.
Methodology :	The controller can be introduced in
6.	single phase or three phases and can
	be installed on new equipment or as a
	retrofit product.
Category of :	Moderate investment but return
option	within 1 year.
Financial :	Estimated savings can be calculated
consideration	using the following formula:
	Saving (RM) = total reduction in kWh
	after installation x RM0.30

Pictures /diagram

Motor energy controllers

Other relevant information	:	The controller can improves the efficiency of motors in applications such as crushers, granulators, mixers and extruders.
References	:	[1]. U.S. Department of Energy's Energy Information Administration.
TIPS 3/ELECTRICITY

Option	:	Install a lighting energy controller.
Description	:	It controls and stabilizes the voltage
		provided to lighting elements.
Application	:	Indoor and outdoor lighting systems.
Outcomes	:	Reduce direct electricity cost .
		Reduce carbon foot print (on the
		average 0.59 kg CO ₂ is emitted per
		kWh of electricity generated ^[1]).
Methodology	:	The controller can be introduced in
		single phase or three phases and can
		integrated into existing lighting
		systems.
Category of	:	Moderate investment but return
option		within 2 years.
Financial	:	Estimated savings can be calculated
consideration		using the following formula:
		Saving (RM) = total reduction in kW
		after installation x RM0.30

Pictures /diagram

Lighting energy controllers

28 | CP Tips for Small & Medium Industries

Other relevant	:	Typical savings of about 35% is
information		achievable. Units normally come built
		in with timer control system.
Success Story	:	A petrol station with outdoor lights
		and convenient store operating 24
		hours a day recorded between 20-
		25% electricity savings by installing a
		controller coupled with a built in
		timer to control lighting for the
		station which illuminates after sunset
		and the convenient store operating 24
		hours a day.
Deferences		[1]. U.S. Department of Energy's
NCICI CHICES	·	Energy Information Administration.

TIPS 4/ELECTRICITY

Option	:	Use low power lights/energy saving bulb / LEDs.
Description :	•	There are many low energy consumption light source available in the market. They include but are not limited to compact fluorescent light bulbs, high-intensity discharge and light emitting diodes (LEDs). The installation is very easy and you can get your supplies without any issues.
Application :	:	Indoor and outdoor lighting systems.
Outcomes	:	Reduce direct electricity cost .
	-	Reduce Life Cycle Cost (LCC) (i.e. LEDs have 10 times longer life compared to fluorescent and 100 times longer life).
Methodology :	:	Lighting systems can be purchased readily and requires little or no structural modifications for installation.
Tips :	•	Automatic controls such as timers and light sensors can further save electricity by turning lights off when not in use. Dimmers also save electricity when used to lower light levels.
Category of :	:	Small investment and return within 6
option		months.
Financial : consideration	:	Estimated savings can be calculated using the following formula: Saving (RM) = total reduction in kW after installation x RM0.30

30 CP Tips for Small & Medium Industries

Pictures / diagram

Pictures of two types of energy saving light bulbs

Other relevant	:	Various brands and specifications are
information		available in the market. One has to
		choose the right rating for
		applications. The saving can range
		from 2-50% from conventional
		lighting.

TIPS 5/ELECTRICITY

Option	:	Install inverters.
Description	:	Inverter is a device that converts direct current (DC) to alternating current (AC); the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits. This will allow it to act as a variable speed drive which can regulate the speed of the motor, and in turn the speed of the pump or fan, by controlling the energy that goes into the motor, rather than restricting the flow of a process running constantly at full speed.
Application	:	Can be retrofitted into air conditioning systems, pumps systems, fans or any motor driven systems.
Outcomes	:	Reduce direct electricity cost . Reduce Life Cycle Cost (LCC) (i.e. by reducing motor stress especially on long runs).
Methodology	:	Inverters can be fitted onto existing systems with little or no modifications.
Tips	:	Inverters can save up to 60% energy consumption on motors drives.
Category of option	:	Moderate to high investment cost depending on the power rating of the motor. However, return can be within 1-2 years.

32 | CP Tips for Small & Medium Industries

Financial	:	Estimated savings can be calculated
consideration		using the following (RM):
		Saving = total reduction in kW after
		installation x RM0.30

Pictures / diagram

Examples of inverters available commercially

Other relevant	:	Inverters also make it possible to
information		completely stop a motor when it is not
		required and soft-starting (which
		cause less tress) when it is required.
Technical	:	Saving is obtained because you can
Justification		operate the motor at the required
		speed and duration. For example, in
		an air conditioning system, an
		inverter can continuously regulate its
		output by altering the compressor
		speed in response to cooling demand.

TIPS 6/ELECTRICITY

Option	:	Install translucent roof panels.
Description	:	By installing translucent roof panel
		strategically, the number of artificial
		lighting required can be reduced (if
		not eliminated altogether for certain
		time of the day).
Application	:	All indoor spaces that utilises
		artificial lighting may be
		supplemented by translucent roof
		panels .
Outcomes	:	Reduce direct electricity cost .
		Reduce carbon foot print (on the
		average 0.59 kg CO_2 is emitted per
		kWh of electricity generated ^[1]).
Methodology	:	Translucent roof panels can be
		installed on roofs. Minor or moderate
		modifications may be required.
Tips	:	About 10% of the roof area with
		translucent light can reduce up to
		about 20% of the total electrical
		lighting requirement up to about 4:00
		pm on sunny days. These
		translucent panels can be coupled
		with daylight harvesting systems to
		further save energy.
Category of	:	Low investment and return within 6
option		months.
Financial	:	Estimated savings can be calculated
consideration		using the following (RM):
		Saving = total reduction in kW after
		installation x RM0.30

Pictures / diagram

A picture of an installation of a translucent roof panels

Other relevant :	Choose a panel type that requires less				
information	maintenance and resistant to				
	degradation. Take into consideration				
	climate conditions on the premise.				
Success Story :	Installation of 10 transparent roof				
	panel in a company in Shah Alam				
	resulted in 12 Mercury Lights (400 W)				
	not being used from 4:00 to 6:00 pm,				
	resulting in RM 120 electricity saving				
	per month.				
Peferences :	[1]. U.S. Department of Energy's				
References .	Energy Information Administration.				

TIPS 7/ELECTRICITY

Option :	Install daylight harvesting system.
Description :	Daylight harvesting systems regulates artificial light usage. When there is
	sufficient natural lighting the
	contribution of artificial lighting is
	being reduced which is usually
	achieved by incorporating light
	sensors.
Application :	All indoor spaces that utilises
	artificial lighting may be
	supplemented by daylight harvesting systems.
Outcomes :	Reduce direct electricity cost .
	Reduce carbon foot print (on the
	average 0.59 kg CO_2 is emitted per
	kWh of electricity generated ^[1]).
Methodology :	Light sensors are normally installed
	on roofs which will gauge light
	availability which will regulate
	artificial light brightness. Minor or
	moderate modifications may be required.
Tips :	A well designed harvesting system can
	generate 35-60% energy
	savings.Spaces with skylights, and
	corridors, private offices and open
	cubicles near windows are good
	candidates for daylight harvesting.
Category of :	Low investment and return within 2
option	years.
Financial :	Estimated savings can be calculated
consideration	using the following (RM):
	Saving = total reduction in kW after
	installation x RM0.30

Pictures /diagram

Picture shows a computer room illuminated by both artificial and natural lights

References		[1].	U.S.	Department	of	Energy's
	•	Ene	rgy Inf	ormation Adm	inist	tration.

Option	:	Set air-conditioning temperature at
Description	:	In many premises the air conditioning
		system are set at low temperatures
		which frequently cerates discomfort
		for the occupants.
Application	:	Air-conditioned spaces (i.e. office spaces).
Outcomes	:	Reducing electricity wastage and
		lengthening the lifespan of the air-
		conditioning system.
		To provide comfort for the occupants
		(not too cold).
		By setting the system at appropriate
		temperatures, energy can be saved
		and it may also help to increase
		productivity.
Methodology	:	Depending on the air-conditioning
		facilities at the premise, temperatures
		can be set individually on split units
		or on centralised units.
Tips	:	Comfort level is normally in between
		23-25°C.
Category of	:	No investment is required.
option		

TIPS 8/ELECTRICITY

Pictures /diagram

A HVAC thermostat

TIPS 9/ELECTRICITY

Option	:	Harvest solar energy.		
Description	:	Solar panels are used as a component		
		to harvest solar energy to generate		
		alternative and supplementary		
		electricity supply for a premise.		
Application	:	Supplementary electricity generated		
		can be used for lighting or heating		
		purposes on the premises (i.e. to		
		generate hot water).		
Outcomes	:	Reduce direct electricity cost .		
	-	Reduce carbon foot print (on the		
		average 0.59 kg CO_2 is emitted per		
		kWh of electricity generated ^[1]).		
Methodology	:	Solar panels are normally installed on		
		roof or open spaces where sunlight		
		can reach panel for the longest period		
		during the day without being		
		obstructed.		
Category of	:	Medium to high investments are		
option		required and return normally more		
		than 3 years.		
Financial	:	Estimated savings can be calculated		
consideration		using the following (RM):		
		Saving = total reduction in kW after		
		installation x RM0.30		

Pictures /diagram

Examples of solar panels installed on roofings.

Other relevant	:	Integration of energy. Solar cells		
information		usually connected in series in		
		modules, creating an additive voltage.		
		Connecting cells in parallel will yield a		
		higher current.		
Caution	:	A thorough feasibility study should be		
		conducted to determine the return for		
		this option.		
References	:	[1]. U.S. Department of Energy's		
		Energy Information Administration.		

Option	:	Encourage good electricity usage practices.	
Description	:	Electricity usage can be reduced simply by minimizing and/or eliminating unnecessary use of electricity (i.e. switching off lights in unoccupied room).	
Application	:	Staff members within the premise.	
Outcomes	:	Reduce direct electricity cost.	
		Reduce carbon foot print (on the	
		average 0.59 kg CO_2 is emitted per	
		kWh of electricity generated ^[1]).	
		Increased awareness among workers.	
Methodology	:	Awareness car be harnessed by	
		training and programmes which can	
		be conducted periodically.	
		Create a working culture within the premise.	
Tips	:	Continuous awareness programs	
		need to be conducted.	
Category of	:	Low or no investment required.	
option			

TIPS 10/ELECTRICITY

Pictures /diagram

Left: Training conducted on good energy saving practices.

Right: Training on energy saving on the job.

TIPS 11/ELECTRICITY

Option :	Optimize process temperature.	
Description :	Temperature is an important parameter in many industries. Process temperatures are normally dictated by Standard Operating Procedure. Reducing high temperatures or increasing low temperatures may reduce loads on equipment and energy consumption and should be considered as good opportunities for saving.	
Application :	Processes and equipment that require heating (i.e. reactors, cooking vessels, sterilizer, dryers). Storage facilities (i.e. chill rooms, freezers). Utilities (i.e. hot and cold water facilities).	
Outcomes :	Reduce direct electricity cost.Reduce fuel requirement where applicable.Opportunity of increase productivity and efficiency (i.e. of the process).	
	Opportunity to increase product quality.	
Methodology :	Depending on the process, operating temperature can be increased/decreased with or without modifications to equipment involved. A through study needs to be conducted to ascertain the total effects of process temperature change. In most cases experimental and/or research work are required to determine the appropriate temperature required.	

42 | CP Tips for Small & Medium Industries

Tips :	This option can be considered as a supplementary to design modification and raw material change options.
Category of : option	No investment required (if no modifications involved) for the change but time and resource required to obtain relevant information and research to determine feasibility of option.
Other relevant : information	Process data and records are important reference data for feasibility analysis. Need to check the compliance for current standard practices or requirements for certain processes.
Caution :	Changing process temperature may affect quality of product and efficiency of process.

TIPS 12/ELECTRICITY

Option	:	Use split unit instead of centralized air-
Description	:	conditioning system. Split units are relatively small and are flexible for zoning and cooling individual spaces. Split units do not require ductwork which can account for about 30% of energy consumption and require more maintenance. Zoning allow units in unoccupied rooms to be switched off and
		accommodated (i.e. storage room and archives may require extra cooling and strict humidity control).
Application	:	All spaces that require air conditioning.
Outcomes	:	Reduce direct electricity cost.
		Reduce carbon foot print (on the average 0.59 kg CO_2 is emitted per kWh of electricity generated ^[1]). Increased comfort level (i.e. increased
		productivity).
		Reduced maintenance cost.
Methodology	:	Proper sizing is required for individual rooms. Design and installation works is normally carried out by contractors/vendors. Minor or no modifications required for installation.
Tips	:	Creating smaller room within a large area may be useful to cater for working space for small number of staff. Maintenance schedule should be drawn out to ensure optimized operation of individual units.
Category of	:	Moderate investment required. Return
option		normally within 1-3 years.

Illustration of an office space being cooled by separate split unit air-conditioning systems with a common external unit

Option	:	Reduce head space in spaces.		
Description	:	In many premises, the buildings are		
		normally built with a lot of head		
		space (between floor and the roof).		
		This causes the air condition		
		requirement to cool the entire space		
		increases. By reducing the head		
		space, the rating required for air		
		conditioning systems can be reduced		
		and electricity consumption can also		
		be reduced.		
Application	:	All building and premises during		
		design stage.		
		Existing spaces.		
Outcomes	:	Reduce direct electricity cost.		
Methodology	:	Review alternative building designs		
		incorporating lower head space.		
		Existing spaces may be incorporated		
		with artificial roofing/ceiling to lower		
		the ceiling.		
Tips	:	Installing artificial roof may be helpful		
		especially in office areas.		
Category of	:	Significant investment required.		
option		Return normally within 1-2 years.		

TIPS 13/ELECTRICITY

Pictures /diagram

Cross sectional view of a building showing air-flow direction

Technical	:	Aesthetic values should not be		
Justification		overlooked and some specific spaces		
		may require higher headspace for		
		logistics purposes.		
Caution	:	Reducing the head space must be		
		referred to the building by laws.		

Ontion		Run electricity intensive processes at		
option	•	night		
		IIIgIIt		
Description	:	The difference in electricity tariff at		
		certain times of the day (i.e. electricity		
		tariff is lower at night) make it more		
		economical to run more electricity		
		intensive processes at night.		
Application	:	Any electricity intensive process (i.e.		
		ice and chill water generation)		
Outcomes	:	Reduce direct electricity cost		
Methodology	:	Plant operating cycles can be		
		regulated to benefit from low tariffs.		
Category of	:	Low to moderate financial		
option		requirement for manpower		
		adjustment.		
Caution	:	Labour costs, local authority		
		requirements and security aspects		
		should be considered during		
		feasibility assessment		
		icasionity assessment.		

TIPS 14/ELECTRICITY

8.2. General Options

No.	Options	Description of	Application
1	Use vacuum systems instead of blowing systems.	Vacuum systems create lesser dust problems.	Pneumatic conveyors and dryers.
2	Repair air leaks promptly.	Leaks in the compressed air lines will increase compressor load due to pressure loss.	Pneumatic systems, compressed air tank and compressors.
3	Work with minimum pressure required for all operation.	Working with minimum pressure required will avoid excessive and unnecessary load on equipment.	Compressors and pumps.
4	Do not oversize equipment.	Oversized equipment consumesmore energyenergyand resourcesfuel)than necessary.	Pumps, compressors, HVAC, heat exchangers and motors.
5	Operate equipment near maximum capacity.	Most equipment are designed to operate optimally near its maximum capacity, which will ensure maximum energy efficiency.	Pumps, compressors, HVAC, heat exchangers and motors.
6	Switch off equipment when not in use.	Equipment which is not in use should be switched off to avoid energy wastage.	Compressor, HVAC, lightings and utilities (i.e. waster heating).

No.	Options	Description of CP Benefits	Application
7	Air inlets should be situated in a cool, dry and clean location.	The warmer the air intake, the lower delivered volume of compressed air.	Compressor.
8	Clean all air filters regularly.	Dirty filters will impart unnecessary resistance and load to the system	Compressor and HVAC.
9	Institute adequate maintenance.	Equipment which is not maintained properly will break down more often and will not function optimally.	Motors, compressors, HVAC, pumps, and all other equipment.
10	Close all unnecessary openings to the building.	Openings will cause the loads to HVACs and air-conditioning system to increase.	HVAC, air- conditioners.
11	Use plastic strip curtains, automatic doors or air curtains.	These installations will reduce unnecessary loading to HVACs at busy openings which cannot be closed.	Large and much trafficked doorways.
12	Install door closers on all doors.	Open doors will increase loads on HVAC systems. Door closers will prevent doors from being left open unintentionally.	All air- conditioned rooms.

No.	Options	Description of CP Benefits	Application
13	Use wind assisted ventilators in preference to fans.	Substitute electricity requirement with renewable energy.	Closed rooms and spaces (i.e factory area).
14	Regularly clean all luminaries, lamps and windows.	Depositions on luminaries, lamps and widows restrict light from passing.	Luminaries, lamps and windows.

Chapter

9

CP Tips for Heat Energy Saving at a Premise

9.1 Detail option

TIPS 1/ HEAT ENERGY

Optimize operating temperature and		
time.		
Process temperature and/or time		
dictate the output for many industrial		
processes. For example, the output		
from a sterilization process is very		
much dependent on the process		
temperature and time. The		
optimisation of these parameters		
present many opportunities for cost &		
energy saving, product quality		
improvement and also increase in		
process efficiency.		
Any unit operation, activity or		
process.		
Reduce energy consumption.		
Improve process productivity and		
quality.		
Optimisation can be considered for a		
particular unit operation or entire		

52 | CP Tips for Small & Medium Industries

		process line. A thorough study on
		effects of parameter change is
		required.
Category of	:	No investment required for hardware
option		but may require resources to conduct
		study.

Pictures / diagram

Gas processing tanks

Caution	:	Reduction in temperature or time
		need to be ascertained through detail
		study.

Option	:	Reduce or eliminate steam leakage.
Description	:	Steam leakages from pipes and joints can occur. These leakages can cause major losses and wastage to process industries. Steam release can also increase risk.
Application	:	Boilers, steam pipes and hot water facilities. Unit operations that requires heating (i.e. heat exchangers, evaporators, crystallisers).
Outcomes	:	Reduce direct cost (i.e. electricity bill or boiler fuel).
		increase salety and reduce fisk.
Methodology	:	Regular maintenance and check-ups on equipment and pipes can identify and prevent steam leakages. Installation of steams traps and other steam related accessories can be used to maximize the steam usage as well.
Category of	:	Small investment may be required.
option		Return can be expected within six months.

TIPS 2/ HEAT ENERGY

Pictures /diagram

A kilogram of steam loss means a loss of 2000-2500 kJ of energy

Steam release from a valve in a pipeline

Option	:	Heat recovery.
Description	:	The basic idea is any material released
		which is not at room temperature still
		contains energy with potential recovery
		(i.e. steam condensate, flu gas).
		Efforts should be made to recover these
		energies as much as possible, even
		though it may not be economically
		feasible in many cases.
Application	:	Can be considered for any hot/cold
		streams throughout the premise.
Outcomes	:	Recover energy.
		Decrease fuel and/or consumption (i.e.
		boiler).
Methodology	:	This option can be considered during
		plant design stage or on existing
		facilities.
Category of	:	Investment will be dependent on the
option		types of recovery system required. But
		normally heat recovery system is
		considered as expensive options.
		However if the amount of energy to be
		recovered is significant, economic
		feasibility can become a reality.
Financial	:	Economic feasibility is usually
consideration		dependent on the amount of heat and
		material released as modifications
		require substantial amount of
		investment.

TIPS 3/ HEAT ENERGY

Option	:	Install steam trap.		
Description	:	Steam traps are used to discharge		
		condensate with a negligible loss of		
		fresh fed steam. Most steam traps		
		involve automatic valves.		
Application	:	Steam pipes and boiler facilities.		
Outcomes	:	Reduce energy wastage (i.e. by		
		reducing steam loss).		
		Better process productivity and		
		quality.		
		Reduction risk and improve safety		
		aspect.		
Methodology	:	Steam traps are available with many		
		specifications to cater for many loads.		
		The can be integrated into existing		
		systems with minor modifications.		
Category of	:	Simple investment requirement and		
option		return within one year.		

TIPS 4/ HEAT ENERGY

Pictures /diagram

An example of a steam trap

Caution	:	Steam	traps	can	also	contribute	to
		steam	loss.	The	erefore	e appropria	ate
		steam t	trap sel	ection	n is in	nportant.	

Option	:	Insulate hot surfaces.			
Description	:	Energy loss can occur from exposed			
		surfaces that are hot or cold (through			
		radiation and convection). Energy loss			
		can be minimized by installing			
		insulation material on the surface.			
Application	:	Tanks and vessels (i.e. reactors, storage,			
		mixing).			
		Heat exchangers.			
		Piping system (i.e. steam pipe, hot water			
		lines, chilled water, lines).			
Outcomes	:	Reduce energy loss.			
		Cost reduction for heating and/or			
		cooling (indirect).			
		Increase safety and reduce risk.			
Methodology	:	Insulation can be installed onto existing			
		systems with no modification required.			
		Insulation material can be selected			
		based on requirements and cost.			
Tips	:	based on requirements and cost. Use removable insulating material to			
Tips	:	based on requirements and cost. Use removable insulating material to minimise solid waste generation.			
Tips Category of	:	based on requirements and cost. Use removable insulating material to minimise solid waste generation. Investment requirement can be moderate			
Tips Category of option	:	based on requirements and cost. Use removable insulating material to minimise solid waste generation. Investment requirement can be moderate to significant. Return may be obtained			

TIPS 5/ HEAT ENERGY

Pictures /diagram

A vessel (left) and pipe (right) being insulated by insulating material.

Option	:	Use closed system for steam/hot water related processes/equipment.		
Description	:	Steams escaping from open vessels or tanks carry with it a lot of energy which increase heating or energy and fuel consumption. Closed systems avoid such releases and reduce energy loss.		
Application	:	Heating tanks (i.e. cooking process, scalding). Water baths.		
Outcomes	:	Reduce energy loss.		
		Reduce material loss (water).		
		Cost reduction for heating (indirect).		
		Increase safety and reduce risk.		
		Opportunity to improve product quality (i.e. better temperature control).		
		Opportunity to increase productivity (i.e. lesser steam discharge in the processing area will also prevent the area from being uncomfortable for the operators).		
Methodology	:	Vessels can be modified to incorporate lids and upgraded to prevent steam release.		
Tips	:	Additional security devices should be considered (i.e. pressure release valves).		
Category of option	:	Moderate investment required. Return period within 1-3 months can be expected.		

TIPS 6/ HEAT ENERGY

Pictures /diagram

Examples of pressurised cookers

Caution	:	Modification		may
		require	upgrade	or
		modificat	tion done	on
		process of	control syst	ems.

9.2 General option

No.	Options	Description of CP Benefits	Application
1	Use staged heating/ Cooling.	Staged heating/cooling allows heating/cooling equipment to operate depending on the demand required. Allowance for optimised use of low-level waste heat, low-pressure steam and de- superheated intermediate pressure steam.	HVAC, heat exchangers, furnaces.
2	Re-examine heating and/or cooling techniques.	Unsuitable heating/cooling techniques are prone to hotspots/cold spots and uneven heating/cooling.	Reactors, heat exchangers, mixers (with heating/ cooling).
3	Use seals to avoid evaporative losses	Vapours and steam escape contribute to material and energy losses and should be avoided.	All equipment and pipes.
4	Plant purchasing criteria to include energy efficiency.	During design stage and procurement, energy efficiency should be considered as well for opportunities in savings on energy cost.	All equipment especially pumps, motors and lights.

No.	Options	Description of CP	Application
		Benefits	
5	Consolidate loads to reduce deliveries.	Proper logistical planning will avoid unnecessary trips to save on fuel costs.	Material handling, conveying systems, storage and transport facilities.
6	Position plant to reduce transport to markets.	During design stage the distance which a product or material need to travel should be considered to minimise transport and handling requirements.	All new plants.
7	Maintain fleets to reduce pollution and improve fuel efficiency.	A well maintained vehicle will reduce possibilities of breakdowns and excessive fuel consumption.	Transport vehicles, lorries and forklifts.
8	Attempt to improve load factor and efficiency by operating as near as possible to the designed rating.	Most equipment is most efficient at the designed rating.	Boilers, heaters, furnace, pumps, and motors.
9	Operate boilers at designed pressure.	Boilers operate at their peak efficiency when they operate at the designed pressure.	Boilers.

No.	Options	Description of CP	Application		
		Benefits			
10	Make sure combustion is complete. If not, check for: -Flame impingement; -Inadequate air-fuel mixing; -Inadequate atomization; and -Inadequate air for combustion.	Incomplete combustion will consume excessive fuel unnecessarily and energy losses can be very large.	Furnaces and boilers.		
11	Avoid letting excessive fuel moisture enter the burner.	Evaporation of water absorbs considerable amounts of heat and consumes fuel unnecessarily.	Furnaces and boilers.		
12	Seal all cracks and holes in boiler flues to prevent air infiltration.	Air infiltration will affect boiler efficiency and damage the boiler.	Boiler.		
13	Thoroughly clean tubes and other fire side heat exchange surfaces, at regular intervals.	Deposits will rapidly reduce heat transfer efficiently and quickly degrade the tubes.	Heat exchangers and boilers.		
14	Investigate whether direct heating of any process is cheaper than steam heating.	Direct heating, eliminates the inefficiency of converting primary energy to steam.	Equipment which require heating (i.e. reactors, mixing vessels).		
No.	Options	Description of CP	Application		
-----	------------------	----------------------	---------------	--	--
		Benefits			
15	Ensure that	Un-optimised	HVAC, cold		
	the	operation of	rooms and		
	refrigeration	refrigeration will	chilled water		
	system is	consume excessive	facility.		
	operating at	amount of energy.			
	the optimum				
	design				
	condition.				
	Operate at the				
	lowest				
	condensing				
	temperature				
	and the				
	highest				
	evaporating				
	temperature.				
16	Ensure that	Deposits on	Condensers		
	the effective	effective heat	and heat		
	heat exchange	exchange surface	exchangers.		
	surfaces are	will affect the heat	_		
	clean.	transfer coefficient			
		and efficiency.			
17	Defrost fan coil	Frost build-up on	Chilled-		
	units at	coils hinder air	rooms,		
	regular	movement and	freezers and		
	intervals.	decrease cooling	chilled water		
		efficiency.	plant.		
18	Clean heat	Deposit built-up on	Heat		
	exchanger	effective exchange	exchanger,		
	surfaces	surfaces change	boilers and		
	regularly.	the overall heat	furnaces.		
		transfer coefficient			
		and decrease			
		efficiency.			

No.	Options	Description of CP	Application
19	Log fuel consumption data on vehicles.	Benefits Transport vehicles consume a lot of fuel. By keeping a log on fuel consumption, any changes can be identified (i.e. due to maintenance required for vehicles).	Transport vehicles, lorries and forklifts.
20	Carry out regular maintenance.	Generally, most equipment require some form of maintenance at specific recommended times. This will ensure all parts work efficiently and are subject to minimal wear and tear.	All equipment and vehicles.
21	Motivate drivers to maintain proper speed limits.	Exceeding speed limits increases risk of accidents and decreases fuel efficiency.	Transport vehicles, lorries and forklifts.

No.	Options	Description of CP Benefits	Application
22	Inflate tyres to recommended pressure.	Insufficient and excessive inflation of tires will increase fuel consumption, increase risk of accident and increase wear on tyres.	Transport vehicles, lorries and forklifts
23	Prevent fuel spillage during re-fuelling.	Spillage can occur during re-fuelling due to improper handling. This can be caused my insufficient training of personnel.	Transport vehicles, lorries and forklifts

66 | CP Tips for Small & Medium Industries

***** This page was left blank intentionally *****

Chapter

10

CP Tips for Water Saving at a Premise

10.1 Detail option

TIPS 1/ WATER

Option	:	Recycle/reuse water.
Description	:	In many premises, large amount of water is being used for processes and cleaning activities which directly contributes to wastewater generation. By recycling the used water, the net amount of water used can be reduced.
Application	:	All process streams involving water usage.
Outcomes	:	Reduce direct cost of water.
		Reduce wastewater generation and therefore reduce treatment cost.
Methodology	:	Reuse water from "cleaner" stages of production in "dirtier" stages of the next production cycle. Recycled water may or may not require treatment before use. For example, use rinse water from the final stage of production for the initial soaking or washing of the next batch of raw material.

68 | CP Tips for Small & Medium Industries

Tips	:	Sometime water used in the processes may be still clean and can be used for cleaning purposes (cleaning floor or any non-critical areas) even without going through the treatment process.
Category of	:	Moderate to large amount of
option		investment required. Return normally
		within 1-2 years.
Financial	:	Recycling facilities can be costly.
consideration		

Pictures / diagram

Wastewater generation can reach massive volumes if not controlled. Image shows a WWTP

Other relevant information	:	Recycling v	water in	to the
		production	area	may
		require	pre	water
		treatment	to	avoid
		contamina	tion.	

Option	:	Use of smaller pipe for washing.
Description	:	Smaller pipes lower the water flow
		rate and therefore lower water
		consumption compared to bigger
		size pipes. Smaller pipes also
		produce higher velocity and could
		be ideal for washing activities.
Application	:	Washing / cleaning activities.
Outcomes	:	Reduce direct cost of water.
		Reduce wastewater generation and
		therefore reduce treatment cost.
Methodology	:	Identify and replace current (big)
		pipes with smaller ones. The pipes
		should also be fitted with a control
		valve to avoid higher water
		wastage.
Tips	:	1-2 inch diameter pipes are
		suitable for this purpose.
Category of option	:	Small investment required. Return
		can be expected within 6 months.

TIPS 2/ WATER

Pictures / diagram

Smaller hoses may be affixed to pipes used for washing to reduce flowatre

Option	:	Fix hand triggers to hoses.
Description	:	Using hand triggers (normally
		closed type) will prevent water
		wastages through unclosed valve.
Application	:	Washing / cleaning activities.
Outcomes	:	Reduce direct cost of water.
		Reduce wastewater generation and
		therefore reduce treatment cost.
Methodology	:	Triggers can be installed at water
		hose to control water flow and
		pressure.
Tips	:	Many types are available and cost
		below RM 100.
Category of option	:	Minimum investment required.
		Return normally within 6 months.

TIPS 3/ WATER

Pictures /diagram

Typical hand triggers can be attached to hoses.

Option	:	Eliminate steps (where possible).
Description	:	Processing steps need to be re-
		examined for its necessity. Reducing or
		eliminating steps that consumes water
		will directly reduce overall water
		consumption. Elimination of steps is
		the highest level of CP implementation.
Application	:	Unnecessary steps (i.e. repeated
		cleaning steps).
Outcomes	:	Increase productivity and may even
		reduce energy usage.
	-	Reduce direct cost of water.
	-	Reduce wastewater generation and
		therefore reduce treatment cost.
Methodology	:	Implementation of this option requires
		a detailed study to determine its effect
		on product quality.
Category of	:	Moderate investment required for
option		modifications to process system (if
		applicable).
<u>Pictures /diagra</u>	m	<u>.</u>
	_	
→ STEP 1	_	\rightarrow STEP 2 \rightarrow STEP 3 \rightarrow

TIPS 4/ WATER

If Step 2 is eliminated, the process is reduced from having 3 steps to 2 steps.

Example	:	A vermicelli plant that requires three
		stages of washing for raw rice
		eliminated one washing step and the
		washing objective can still be met.

TIPS 5/ WATER

Option	:	Optimize washing time/number of cycle.
Description	:	In many premises, washing/cleaning
		activities are done without prior detail
		study on time and cycles required to
		achieve the required results/objective.
		Therefore, optimizing time and number
		of cycles for washing/cleaning may
		reduce the water usage significantly.
Application	:	Washing/cleaning activities.
Outcomes	:	Reduce direct cost of water.
		Reduce wastewater generation and
		therefore reduce treatment cost.
		Increase productivity (faster time).
		Reduce energy usage and may even
		reduce material lost.
Methodology	:	A detailed study on the effect on product
		quality is required before any changes
		can be made to process.
Category of	:	Small amount of investment required to
option		conduct the study. Medium to large
		amount of investment for modifications
		to equipment (if necessary).
Example	:	400 kg of meat was rinsed three times
		and each rinsing takes about five
		minutes. The total water used and
		wastewater generated is about 2 m ³ . By
		reducing the duration of the rinsing or
		number of cycles, the total water used
		can be reduced significantly.

Option	:	Use pressure washing system.
Description	:	By using pressure system, the washing activities, especially washing of floors, drains and machines can be more efficient and use lesser amount of water.
Application	:	Cleaning and washing.
Outcomes	:	Reduce direct cost of water.
		Reduce wastewater generation and
		therefore reduce treatment cost.
		Increase productivity (i.e. faster time to
		wash).
		Reduce energy usage and may even
		reduce material lost.
		Possible to achieve high quality of washing
Methodology	•	Pressurised water system can be
memorally	•	generated using a pressure pump or
		through a centralized system where
		probably water at about 3-6 bar pressure
		is required.
Category of	:	For centralized washing system moderate
option		amount of investment may be required.
-		Return between 1-2 years.

TIPS 6/ WATER

Pictures / diagram

A typical pressure washing system.

TIPS 7/ WATER

Option	:	Use of rain water.
Description	:	Initiatives should be taken to harvest
		the rain water if it is possible. The
		harvested rain can be used for non-
		process related activities.
Application	:	Perimeter washing.
		General water usage (i.e. watering
		plant, cistern).
Outcomes	:	Reduce town water consumption.
		Reduce direct cost of water.
		By using rain water for some portion of
		the washing and cleaning, one can
		expect environmental benefit where
		carbon foot print related to producing
		town water can be reduced.
Methodology	:	Rain water can be harvested and
		collected into a tank with installed
		pipelines. Treatment may be required
		for certain applications but in most
		ioi certain applications but in most
		applications rainwater is only
		applications rainwater is only considered for applications that do not
		applications rainwater is only considered for applications that do not require it to be treated further.
Category of	:	applications rainwater is only considered for applications that do not require it to be treated further. Require moderate amount of
Category of option	:	applications rainwater is only considered for applications that do not require it to be treated further. Require moderate amount of investment but monetary return may
Category of option	:	applications rainwater is only considered for applications that do not require it to be treated further. Require moderate amount of investment but monetary return may be poor and may take more than six
Category of option	:	applications rainwater is only considered for applications that do not require it to be treated further. Require moderate amount of investment but monetary return may be poor and may take more than six years to return the investment. This
Category of option	:	applications rainwater is only considered for applications that do not require it to be treated further. Require moderate amount of investment but monetary return may be poor and may take more than six years to return the investment. This option should be considered for non-
Category of option	:	applications rainwater is only considered for applications that do not require it to be treated further. Require moderate amount of investment but monetary return may be poor and may take more than six years to return the investment. This option should be considered for non- monetary returns (i.e. environmental

Diagram above shows a typical rain collecting system. Rain is being harvested from the roof and gutter system. Collected rainwater passes to preliminary treatment which is the first filtration to remove any coarse materials before flowing into the tank for storage. Prior usage, the water is usually subject to secondary treatment which will consist of a filtration system, activated carbon filter and UV treatment depending on the intended use of the water.

TIPS 8/ WATER

Option	:	Use automated washing.
Description	:	Manual washing (i.e. fruits, containers, and tanks) utilises excessive amount of water. Therefore, automated washing cycles create opportunities for savings and improved productivity because time, accuracy and of a wash cycle can be controlled and reproduced with great accuracy.
Application	:	Washing (i.e. equipment, tanks, vehicle).
Outcomes	:	Reduce direct cost of water. Reduce wastewater generation and therefore reduce treatment cost. Increase productivity (i.e. faster time to wash). Reduce energy usage and may even reduce material lost (i.e. cleaning chemicals). Possible to achieve high quality of washing
Methodology	:	Automated washing systems can be retrofitted into current premise with little or no modifications to existing facilities.
Category of option	:	Investment requirement ranges moderate to high depending on capacity. Return is dependent on the extent of the automation.

Pictures /diagram

Diagram on the left shows an automated cleaning system for transport trucks. Automation for washing saves a large amount of water and process time.

Option	:	Use dry clean-up methods.
Description	:	Dry clean-ups methods can replace the common wash and rinse method which requires water. In most cases these methods involve physical activities (i.e. vibration, jet air stream).
Application	:	Cleaning activities (i.e. processing area, tanks, vehicles).
Outcomes	:	Reduce direct cost of water. Reduce wastewater generation and therefore reduce treatment cost.
Methodology	:	Large applications may require some equipment installation (i.e. pneumatic vibrators, air compressors). Simple applications involve common tool and appliance (i.e. brooms, air blowers, scraper).
Category of option	:	Investment range from low to moderate depending on equipment required.

TIPS 9/ WATER

Pictures /diagram

Diagram on the left shows a worker using sweeping a warehouse using an industrial sweeping broom. Similar equipment can also be used to clean up vehicles, equipment and lighting to replace water jets.

10.2 General Options

No.	Options	Description of CP	Application
		Benefits	
1	Installation	Flow meters and lever	Whole
	of water	indicators will allow	process
	flow meter	accurate	plant.
	and level	measurements so	
	indicator.	proper controls can be	
		made to supply only	
		the designed amount of	
		water. This will prevent	
		any wastage and	
		ensure process is	
		running efficiently.	
2	Improve	Increased washing	Washing
	washing	efficiency will increase	processes/
	efficiency	productivity and reduce	activities.
	through	wastewater generation.	
	installation		
	of flow		
	restrictors		
	to control		
	water		
	volumes,		
	use counter		
	current		
	washing		
	procedures.		
3	Balance	This will reduce loads	Wastewater
	acid and	to the wastewater	treatment
	alkalıne	treatment plant.	plant.
	waste water		
	streams to		
	neutral pH.		

No.	Options	Description of CP	Application
		Benefits	
4	Ensure	Incorrectly treated	Boilers.
	proper feed	water will affect heat	
	water	transfer, steam quality	
	treatment is	and plant life.	
	carried out.		
5	Keep flow	Flow down streams	Boilers.
	down to	increase wastewater	
	minimum.	generation and is a	
		source for heat loss.	
6	Recover as	This substantially	Boilers.
	much	reduces feed water	
	condensate	heating requirements	
	as possible.	and water treatment	
		costs.	

80 | CP Tips for Small & Medium Industries

***** This page was left blank intentionally *****

Chapter

11

CP Tips for Material Saving at a Premise

11.1 Detail option

TIPS 1/ MATERIAL

Option	:	Buy/sell in bulk.
Description	:	When items are bought or sold in bulk,
		the number of packaging materials and
		related logistics attached to it is reduced.
Application	:	Raw materials.
		Feedstock.
Outcomes	:	Reduce direct cost.
		Reduce solid waste generation (i.e.
		packaging material).
		Reduce carbon footprint (i.e. contributed
		by transportation and handling
		activities).
Methodology	:	Negotiate with suppliers to supply raw
		material in bulk. Minor or moderate
		modifications may be required on
		current storage and handling facilities.
Category of	:	Investment may be required if facilities
option		need to be modified to cater for changes
		in handling and storage capacity.
		However, the return is typically within 1-
		3 years.

82 | CP Tips for Small & Medium Industries

Pictures /diagram

A typical sight in a warehouse.

Caution	:	Be care	ful not to overs	stock
		raw	material	(i.e.
		perishal	ole materials).	

TIPS 2/ MATERIAL

Option	:	Buy recyclable products/materials.
Description	:	Used materials or resources are common
		contributors to waste generation in a
		facility (i.e. used packaging material,
		spent catalyst, residual material,
		solvents). Recyclable materials will
		reduce waste generation and create
		opportunities for cost saving.
Application	:	All raw materials.
		Office and administrative materials (i.e.
		paper, printer toners).
		Packaging materials.
Outcomes	:	Reduce waste generation.
		Reduce material consumption.
		Reduce material cost.
		Eco-branding the product manufactured
		as an environmental friendly products.
Methodology	:	Sometimes a particular raw material (i.e.
		one which ends up as waste) can be
		substituted by a recyclable material by
		little or no modification to the process
		equipment.
Category of	:	The financial implication for this option
option		is dependent on type of material and
		modifications required. The cost and
		implications of recycling the material
		should also be taken into account.

Pictures /diagram

Scrap metal being collected for recycling.

Recycled paper in rolls.

Other relevant information	:	A thorough	study is
		required to	determine
		appropriate	material
		substitutes.	Extra
		attention sho	ould be given
		to make s	ure product
		quality and p	oroductivity is
		not affected.	

TIPS 3/ MATERIAL

Option	:	Practise First in First Out (FIFO).
Description	:	The basic principle of FIFO is preventing materials from being stocked up for periods longer than is absolutely necessary. It is a combination of systematic management of logistics and inventory.
Application	:	Storage area and facilities.
Outcomes	:	Reduce waste generation (i.e. materials exceeding shelf life). Reduce unnecessary product handling.
Methodology	:	FIFO systems may require some racking system and/or modifications to current storage facility.
Category of option	•	The cost implications may vary but range from low to medium capital investment.

Pictures /diagram

Aa FIFO system being employed in a warehouse.

A shelving/racking system designed for FIFO applications

TIPS 4/ MATERIAL

Option	:	Use less toxic material.
Description	:	Many products with lesser toxicity level
		are being manufactured in recent times.
		This includes solvents (water based
		compared to solvent based) and herbal
		based cleaning materials. Premises are
		advised to evaluate the toxicity of their
		chemicals, cleaning materials, additives
		and other laboratory chemicals. In the
		market, there could be a substitute
		which could be an attractive alternative
		for an existing chemical.
Application	:	Chemicals, cleaning agents.
Outcomes	:	Reduce toxicity of material.
		Reduce health risk/reduce schedule
		waste generation.
		Environmental friendly product and
		reduction in disposal cost due to lesser
		generation of toxic waste. It is also good
		for the safety of the operators.
Methodology	:	Less toxic materials (i.e. raw material,
		cleaning chemicals) can replace existing
		chemicals with or without modifications
		to process parameters or equipment
		involved.
Category of	:	The costs are very much dependent on
option		the type of material being substituted.

Pictures /diagram

Natural based products like soaps and detergents are available in the market.

TIPS 5/ MATERIAL

Option	:	Waste to wealth concept application.
Description	:	In a typical industry there could be
		many types of waste generated. Wastes
		were normally considered as nuisance in
		the past and are normally disposed off.
		With the advance technology and
		appreciation for the environment, many
		resource recovery technologies and
		methods are currently available. From
		making biodiesel from fat to making
		bricks using sludge, affordable
		technologies are now available. In fact
		the wastes are being bought for a fee by
		many parties for resource recovery
		purposes. The premise should take effort
		to turn their waste into wealth as well.
Application	:	Wastewater treatment sludge, packaging
		material, process waste, unused parts
		and even rejected raw materials and
		products.
Outcomes	:	Reduce overall waste generation.
		Reduce treatment and disposal cost.
		Reduce waste generation and profit by
		selling the waste for resource recovery.
Methodology	:	Detail study need to be conducted on
		possible uses of waste.
Category of	:	No investment required if the resource
option		recovery is conducted by third party.

Pictures / diagram

Waste material around the premise can be considered for other usage or purpose.

11.2. General Options

No.	Options	Description of CP	Application
		Benefits	
1	Check the need of each raw material.	Sometimes a particular material (especially those that end up as waste) can be reduced or eliminated by modifying the process.	Whole premise
2	Change shipping containers.	Containers and packaging material end up as waste. Attention should be given to reuse packaging material or minimise use on unusable ones.	All packaging materials.
3	Use inhibitors.	Side reactions can occur in reactors causing generation of off-spec products and by-products. Inhibitors can prevent unwanted side reactions or polymer formation.	Reactors.
4	Improve quality of feed.	Impurities in raw materials can contribute to waste generation. Purity of material can be achieved by working with the suppliers of the raw material or installing purification equipment on-site.	Reactors and mixers.

No.	Options	Description of CP	Application
	-	Benefits	
5	Recover product/ material from transport vehicle.	Spillage orresidualmaterialontransportmaterialcontributesto wastegenerationandwastage.	Transport vehicles and storage facilities.
6	Reduce number and quantity of samples.	Certain plants collect and catalogue samples from each batch of production. The number and quantity of these samples should be kept at minimum to achieve its objectives (i.e. quality monitoring).	All process lines.
7	Use seal-less pumps.	Seal-less pumps (i.e. magnetically driven pumps) reduce possibility leaks and losses.	Pumps.
8	Recover purges and seal flushes.	Flushes should be considered for recycling to the process to reduce waste generation.	All process lines.
9	Use on-line cleaning techniques.	On-line cleaning techniques (i.e. reversing brushes or circulating sponge balls) reduces equipment maintenance.	Pumping systems
10	Just in time and/or Do not overstock.	Overstocking can contribute to waste generation due to exceeding shelf life. Supplies should be maintained at optimal level at all times.	Storage facilities.

No.	Options	Description of CP	Application
11	Cogenerate from waste.	Benefits Some waste products may be considered as fuel to generate energy (i.e.	Waste materials.
12	Recover/ Reuse off- spec product and/or by- product.	All waste streams/products should be examined for opportunities to recovery or reuse to reduce waste generation.	All waste and off-spec products.
13	Buy concentrate items compared with dilute items.	Concentrate items are less voluminous and reduce handling requirements.	Raw materials.
14	Reduce or eliminate "high waste cost" products.	Products that generate less waste should be considered to replace products that generate more waste.	All products.
15	Improve turn around and produce products when required. (lower stocks for warehousing)	Logistics and demand should be studied to avoid overproducing and overstocking products. Storage of products can consume resources (i.e. chilled facilities).	Products and process lines.

No.	Options	Description of CP	Application
		Benefits	
16	Order raw materials that are easier to handle and do not degenerate easily.	Alternative raw materials that is more robust reduce handling costs should be considered.	Raw materials.
17	Negotiate with suppliers to take back surplus and defective materials.	This will reduce waste generation and storage requirements.	Raw materials.
18	Negotiate the use of reusable packaging systems.	Reusing packaging material will reduce waste generation and direct packaging cost.	Raw material and product packaging.
19	Regenerate raw materials where possible.	Some raw materials can be treated or regenerated so it can be reused in the process or other auxiliary processes.	Raw material.
20	Controls on bulk tanks to avoid overflows.	All tanks should have overflow control to prevent losses.	Tanks.
21	Checksonmaterialweightstoconformtoorders.	Material quantity and quality should be logged for discrepancies and quality control.	All material.
22	Bund liquid tanks to contain spillage.	Spilled material can upset waste treatments plants and should be contained (i.e. for specific treatment or disposal).	Tanks and vessels.

No.	Options	Description of CP	Application
	-	Benefits	••
23	Use tanks that will fully drain.	Tanks should be designed to fully drain to avoid residual losses.	Tanks and vessels.
24	Minimize the number of times materials are moved on site.	Proper logistics design avoids unnecessary handling steps which consume time and resources.	Materials and material storage.
25	Check transfer lines regularly for leaks and spills.	Properly maintained lines and equipment eliminate possibilities of losses due to leakages.	All process lines and equipment.
26	Rinsing should be done with minimal water volumes.	Optimising standard operating procedures for cleaning should be carried out to reduce water consumption.	Cleaning and draining of equipment and lines.
27	Reuse packaging systems.	Consider using reusable packaging systems (i.e. wooden crates instead of boxes).	Packaging.

Chapter

12

General CP Options

CP option implementation is largely dependent on the support system as well. The training for the staff, maintenance and general housekeeping items must be given sufficient attention as well. Some tips are as follows:

(a) Training & Incentives

- Make employees aware of the reasons for waste reduction.
- Train all employees on the principles of Cleaner Production.
- Provide incentives for cleaner working practices.
- Provide opportunities for suggestions to be registered with management.

(b) Housekeeping

- Reuse paper binders to reduce stationery consumption.
- Use refillable pens, pencils and other office equipment.
- Paper reduction through more effective use (less reports, less copies, use the complete page, better quality control, reduce form work, reduce financial reports, print changes only, use both sides of paper).

- Use 5S¹ to keep working area clean and in order.
- Use Kaizen² to improve the premise continuously.
- Do not mix the different type of waste generated.

(c) Maintenance

- Maintain equipment according to schedule.
- Maintain all maintenance records to follow trends and changes in conditions.
- Regularly calibrate all instruments. Instruments quickly become inaccurate if not regularly calibrated.
- Ensure boiler sundry equipment is regularly maintained.

¹ 5S is the name of a workplace organization methodology that uses a list of five Japanese words which are *seiri, seiton, seiso, seiketsu and shitsuke*. There are 5 primary phases of 5S: sorting, straightening, systematic cleaning, standardizing, and sustaining. (*source: Wikipedia*)

² Kaizen (改善), Japanese for "improvement" or "change for the better", refers to philosophy or practices that focus upon continuous improvement of processes in manufacturing, engineering, supporting business processes, and management. *(source: Wikipedia)*

No.	Options	Description of CP	Application
		Benefits	
1	Use waste stream from other plants (i.e. industrial ecology).	Within a group of industries (i.e. technology parks) the quantity and quality of each plant's waste stream should be documented which can be reviewed by all plants in that group or vicinity to determine if any are suitable feedstock.	Group of industries.
2	Program plant to handle unexpected upset and trip.	Trips and process upsets cannot be avoided altogether. Processes should be designed (i.e. controlled) to respond to these upsets to reduce or eliminate losses (i.e. spillage, runaway reactions, equipment damage).	All process lines.
3	Automate start-ups, shutdowns and product changeover.	Designing and programming a process line to reach stable operating condition as quick as possible after start- ups, shutdowns and product changeover will time generating off-spec products (i.e. which end up as waste). Furthermore, equipment damage, wear and fouling can be reduced.	All process lines.

12.1 Other General CP Options for Saving

No.	Options	Description of CP	Application
		Benefits	
4	Use non- corroding tubes.	Non-corroding tubes foul much slower and reduce waste generation (i.e. off- spec products).	Heat exchangers, boilers and reactors.
5	Improve control system.	A good control system is important to reduce generation of off-spec products and side- reactions.	All process lines.
6	Improve catalyst.	Many new and improved catalysts are available in the market with new features (i.e. reduce waste generation or improved activity).	Reactors.
7	Improve mixing efficiency.	Improper mixing or inadequate mixing can be the cause of off-spec product generation. Attention should be given to improve mixing by new impeller design or vessel design.	Reactors and mixers.
8	Reduce levels of reprocessing.	Unnecessary processing consumes resources and generates waste and should be avoided or minimised.	Washing processes and other processes.
9	Eliminate chemical additions where possible.	All materials should be re-examined to determine its need and possibility for reduction or elimination.	All material.

No.	Options	Description of CP	Application
	- F	Benefits	
10	Examine opportunities to reduce chemical consumption	Sometimes, less material can be consumed by modifying equipment or optimising process parameters.	Processes.
11	Replace chemicals with a "high environment al impact" with chemicals with a "low environment al impact".	Alternative (more environmental friendly) materials are being developed and should be considered to replace current ones.	All material.
12	Replace inorganic acids and alkalis with organic acids and alkalis where possible.	Organic material is more bio-degradable compared to inorganic materials.	All material.
13	Use highly bio- degradable chemicals.	Reduce generation of untreatable waste.	All materials.
14	Replace chemical attack with water pressure, or heat for cleaning.	Cleaning or washing using chemicals (i.e. detergents or oxidants) should be considered to be replaced with water supplemented with physical attack (i.e. pressure, sonication or scraping and brushing).	All cleaning, rinsing and draining processes.

http://www.doe.gov.my

Published by:

Cleaner Production Unit

Department of Environment Ministry of Natural Resources and Environment No.25, Persiaran Perdana, Precint 4 Level 1-4 Podium 2&3 Lot 4G3 Precinct 4 62574 Putrajaya Tel : +603 - 8871 2000 Fax : +603 - 8881 0920 email : cpsupport@doe.gov.my

> Cleaner Production Virtual Centre http://cp.doe.gov.my/cpvc/