
maximum-likelihood estimators), is often much more
straightforward and flexible. Furthermore, the statis-
tical properties of the maximum-likelihood estima-
tion-style estimators can be superior.

Although maximum-likelihood estimation allows
for greater model flexibility, it requires a search
algorithm to find a global maximum (overall max-
imum), unlike generalized least-squares models. For
very complex models, only a local maximum may be
found, or there may be no convergence. Many
statistical packages have built-in procedures for
mixed-linear or nonlinear models, allowing for easier
application of these relatively new procedures.

Overall Considerations in Designing and
Analyzing Forestry Experiments

In order to obtain results that can be interpreted with
little or no confounding, experimental units should be
carefully selected to remove factors that are not of
interest to the experimenter, but would affect the
variables of interest. Random allocation of treatments
is also needed to equalize the impacts of any
remaining factors that were not removed through
careful selection. Identifying factors as fixed versus
random and using the appropriate design is essential
to correct interpretation of results. Also, the correct
analysis of hierarchical designs should be stressed;
incorrect analyses sometimes appear in literature. For
least-squares analysis, expected mean-squares should
be calculated to determine appropriate F-tests. Power
analysis is strongly recommended, during the design of
the experiment, to ensure that statistically significant
results indicate differences of practical importance.

Because of the large time and spatial scale of many
forest processes, experimental units often are large and
long-term, in order to have meaningful results. This
leads to problems with traditional designs, in that
experimental units are large and very heterogeneous,
and some are lost over time. Also, there is low power
as there are few experimental units. Assumptions of
least-squares analysis are commonly not met, resulting
in difficulties in analysis and interpretation.

New technologies using maximum-likelihood
methods allow greater variability in the analysis of
data. These methods have improved our ability to
conduct analyses when the assumptions of least-
squares analysis are not met, and have increased the
flexibility in the design of forestry experiments.

See also: Afforestation: Species Choice; Stand Estab-
lishment, Treatment and Promotion - European Experi-
ence. Ecology: Human Influences on Tropical Forest
Wildlife. Environment: Environmental Impacts. Experi-
mental Methods and Analysis: Biometric Research;

Statistical Methods (Mathematics and Computers).
Health and Protection: Diagnosis, Monitoring and
Evaluation. Inventory: Forest Inventory and Monitoring;
Modeling. Landscape and Planning: Spatial Information.
Mensuration: Yield Tables, Forecasting, Modeling and
Simulation. Recreation: Inventory, Monitoring and Man-
agement. Soil Development and Properties: Soil Con-
tamination and Amelioration. Tree Breeding, Practices:
Biological Improvement of Wood Properties. Wood
Formation and Properties: Wood Quality.
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Scheffé H (1959) The Analysis of Variance. Toronto,
Canada: John Wiley.

Sheskin DJ (1997) Handbook of Parametric and Nonpara-
metric Statistical Procedures. New York: CRC Press.

Statistical Methods
(Mathematics and Computers)
H T Schreuder, USDA Forest Service, Fort Collins,
CO, USA

& 2004, Elsevier Ltd. All Rights Reserved.

Inference

Scientific inference becomes statistical inference
when the connection between the unknown ‘state
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of nature’ and the observed information is expressed
in probabilistic terms.

Statistical inference from sample surveys can be
model-based, in which inference relies on a statistical
model to describe how the probability structure of
the observed data depends on uncontrollable chance
variables and frequently on other unknown nuisance
variables. Inference can also be design-based, in
which reliance is placed on probabilistic sampling.
The following is a brief summary of both ap-
proaches.

In nonprobabilistic or model-based sampling,
inference is made by specifying an underlying super-
population model x for the values of the variable in
the actual population being sampled where the actual
values are considered random variables from the
superpopulation. Then the actual population or a
sample from it is considered a sample from this
superpopulation of interest. Sample elements do
not have to be chosen at random or with known
probability as long as they are not selected based on
their values of interest yi, i¼ 1,y,N. Inferences and
conclusions rely heavily on the model assumed,
which can be a serious liability if the model is not
correctly specified. But if correctly specified, an
increase in precision can be expected over the
design-based approach.

The design-based approach to inference relies
heavily on probabilistic sampling, in which each unit
and pairs of units in the population have a positive
probability of being selected and the probability of
each sample can be calculated. The statistical
behavior of estimators of a population characteristic
is based on these probabilities and the probability-
weighted distribution of all possible sample esti-
mates. A weakness of this approach is that samples
that were not drawn are considered heavily in
evaluating the properties of the inference procedure,
yet should not inference about a population para-
meter be based solely on the actual sample drawn?
But the approach is objective and the only assump-
tion made is that observational units are selected at
random so the validity of the inference only requires
that the targeted and sampled populations are the
same. And careful attention to sample selection
within the framework of probabilistic sampling will
eliminate the least desirable samples from considera-
tion. The idea behind probabilistic sampling is to
make the sample representative of the population
being sampled.

A crucial difference between design-based and
model-based inference is that design-based inferences
are made about the finite, usually large, population
sampled, whereas model-based sampling inference,
although initially restricted to the usually small

sample being taken, is generalized to superpopula-
tions by the use of models. Note that there is a
distinction between enumerative (or descriptive) and
analytical (or comparative) surveys. In enumerative
surveys a 100% sample of the existing population
provides the complete answer to the questions posed,
but is still inconclusive in analytical surveys (see
Figure 1 for informative distinctions between analy-
tical and enumerative surveys). Design-based sam-
pling is widely accepted now and we limit our
discussion to it.

Basic Concepts

Why Sample?

Most decisions are made with incomplete know-
ledge. Your physician may diagnose disease from a
single drop of blood, for example. We hope that the
drop represents the nonsampled portions of the body.
A complete census is rare – a sample is common-
place. A ranger advertises timber sales with estimated
volume. Bidders take the truth and reliability of this
information at their own risk and judgment.

Sampling will frequently provide the essential
information more timely at a far lower cost and
can be more reliable than a complete enumeration.
There are several reasons why this might be true.
With fewer observations to be made and more time
available, crews will get less tired and remain more
committed to careful measurement of the units in the
sample. In addition, a portion of the saving resulting
from sampling could be used to buy better instru-
ments and to employ or train higher-caliber person-
nel. But it is critical that the sample represents the
population well!

Populations, Parameters, Estimators, and
Estimates

The central notion in any sampling problem is the
existence of a population, a collection of units with
values of variables of interest attached. The units are
selected and the values of interest obtained from the
selected elements, either by measurement or observa-
tion. Whenever possible, matters will be simplified if
the units of the population are the same as those that
can be selected for the sample. If we wish to estimate
the total weight of earthworms in the top 15 cm of
soil for some area, it would be best to think of a
population made up of blocks of soil of some
specified dimension with the weight of earthworms
in the block being the unit value. Such units are easily
selected for inclusion in the sample and projection of
sample data to the entire population is relatively
simple. If we think of individual earthworms as the
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units, selection of the sample and expansion from the
sample to the population may both be very difficult.

To characterize the population as a whole, we
often use certain constants of interest called para-
meters. The proportion or the number of living
seedlings in a pine plantation are parameters. Usually
the parameters estimated are the population mean or
total of one or more variables or change therein over
time but we are now often also interested in potential
explanations of why interesting changes in para-
meters happen. Parameter estimates are generated
from samples using mathematical formulas called
estimators.

Bias, Accuracy, and Precision

A good estimate of a population trait or parameter is
one that is close to the true value and obtained from
a sample at a reasonable cost. But what happens if
the person selecting the sample is prejudiced in some
manner in terms of either selecting the sample or

making measurements? Either one of these would
introduce bias into our estimate.

Statisticians have well-defined expressions for bias,
accuracy, and precision. Bias is a systematic distor-
tion. A distinction is made between bias in measure-
ment, in method of selecting the sample, or in
estimation of the parameter.

Measurement bias can result, for example, when
an observer counts trees on plots and systematically
excludes or includes border trees.

Bias due to sampling selection arises when certain
units are given a greater or lesser representation in
the sample than in the population and this is not
compensated for in estimation. If we only sample
recreation preferences of visitors to a park on
weekends, bias would occur because weekday users
had no opportunity to appear in the sample.

The technique of estimating the parameter after
the sample has been taken is also a possible source of
bias. If the most common recreation preference of
users on two national forests is estimated by taking a

no

Enumerative
    survey

Define sampling 
      procedure

Define sampling
       frame

Is frame identical to
target population?

yes

Select
 SRS
  (3)

     Other
probabilistic
  sample (4)

   Select 
nonrandom
 sample (5)

Objectives

 Define the target or 
process about which 
  to draw inference

Type of survey needed (1)

Assess relevance
of frame (2)

Analytical
  survey

Determine assessment 
            process

Define sampling procedure

Determine relevance of 
   sampled process (6)

 Select
desired
 sample

Figure 1 A comparison of enumerative and analytical surveys. The numbers refer to the following:

(1) Are the objectives to draw conclusions about an existing finite population (enumerative survey) or to act on or predict the

performance of a (frequently future) process (analytical survey)?

(2) Statistical intervals apply to the frame from which the sample was drawn. Inferences could be biased if the target population is

different from the population used for the frame.

(3) Often simple random sampling (SRS) is assumed in constructing confidence intervals.

(4) Confidence intervals can also be constructed for other probabilistic procedures; for example, bootstrapping intervals for the most

complex ones.

(5) Statistical confidence intervals are not meaningful here.

(6) Statistical confidence intervals apply to the sampled process and not necessarily to the process or population of interest.

Adapted from Hahn GJ and Meeker WO (1993). Assumptions for statistical inference. American Statistics 47: 1–11. Reprinted with

permission from The American Statistician. Copyright 1993 by the American Statistical Association. All rights reserved.
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simple arithmetic average of the preferences from the
two forests, the resulting average may be seriously
biased if there is a considerable difference in their
size and use.

Selection and measurement biases are rarely
acceptable. Estimation bias may be acceptable when
some biased estimator is more precise with only
slight bias relative to unbiased ones.

A biased estimate may be precise but it is not
accurate. Accuracy refers to the success of estimating
the true value of the parameter; precision refers to
the clustering of sample values about their own
average, which, if biased, cannot be the true value.
Accuracy, or closeness to the true value, may be
absent because of bias, lack of precision, or both
(Figure 2).

Variables, Continuous and Discrete

Variation is a fact of life. Coping with some of the
sampling problems created by variation is an
important part of making valid inferences. For
example, tree height is a variable.

Continuous variables are those expressed in a
numerical scale of measurement, any interval of
which may, if desired, be subdivided into an infinite
number of values, say amount of time spent
recreating. Discrete variables are qualitative or those
represented by integral values or ratios of integral
values, either attributes such as the proportion of
trees having a specific attribute or counts such as
number of people in a recreation group.

Continuous and discrete data may require different
statistical procedures. Most of the sampling methods
and computational procedures discussed are for use

with continuous variables and we focus on those.
The procedures for discrete variables are generally
more complex. Often count variables can be treated
as continuous variables, especially for larger sample
sizes.

Distribution Functions

A distribution function shows, for a population, the
relative frequency with which different values of a
variable occur so that the proportion of units within
certain size limits can be determined. Each popula-
tion has its own distinct distribution function that
can often be approximated by certain general types
of function, such as the normal, binomial, Poisson,
and negative binomial. The bell-shaped normal
distribution is often encountered in dealing with
continuous variables such as volume per hectare
in old-growth stands of timber. The binomial is
associated with data where a fixed number of
individuals are observed on each unit, characterized
by the number of individuals having some particular
attribute such as number of seed germinating on a
dish. The Poisson distribution may arise where
individual units are characterized by a count having
no fixed upper limit, particularly if zero or very low
counts tend to predominate, such as number of dead
trees per hectare. For such data the negative binomial
may be useful if low counts do not dominate.

The form of the distribution function dictates the
appropriate statistical treatment of a set of data. The
exact form of the distribution will seldom be known,
but some indications may be obtained from the
sample data or from a general familiarity with the
population. The methods of dealing with normally
distributed data are simplest and fortunately the
distribution of means of large samples may be
approximated well by this distribution.

Sample estimates are subject to variation just like
the individual units in a population. The mean
diameter of a stand as estimated from a sample of
three trees will frequently be different from the mean
estimated from other samples of three trees, and a
sample of size 6 would usually produce a more
precise estimate than a sample of size 3.

The measure of variation most commonly used is
the variance, a measure of the dispersion of
individual attribute values about their mean esti-
mated from a sample. Large and small variances
indicate wide and little dispersion respectively. The
variance of an attribute is a parameter.

The estimator of the variance from a simple
random sample is given by:

s2 ¼
Pn

i¼1ðyi � %yÞ2
n� 1

+

+

+

+

+

+++
++++ ++

++

+

+

+ +

+

+

Unbiased Biased

Accurate Precise

Figure 2 An example of bias, precision, and accuracy if

average distance to plot center is used in estimating distance to

center of target for five shots.
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where s2¼ sample estimate of the population var-
iance, yi¼ the value of the ith unit in the sample,

%y¼ the arithmetic mean of the sample, i.e., %y ¼Pn
i¼1 yi=n; n¼ the number of units observed in the

sample, and s is the standard deviation, the square
root of the variance. Measures of the same form,
called the variance of the estimate (s2/n for simple
random sampling (SRS)) and the standard error of
estimate (standard error of estimate¼ square root of
the variance of the estimate) are merely the variance
and standard deviation among estimates rather than
among individual units. Repeated sampling is un-
necessary; the variance and the standard error can be
obtained from a single set of sample units where the
variability of an estimate depends on the sampling
method, the sample size, and the variability among
the individual units in the population. A sample
estimate should be presented with an indication of its
reliability as measured by the standard error.

With the standard error, confidence limits can be
estimated suggesting how close we might be to the
parameter being estimated. For large samples (usual-
ly more than 30) the parameter estimated will be on
average roughly within 2 standard errors of the
estimated parameter (based on an approximation to
the normal distribution) unless a 1 in 20 chance
occurred (95% confidence limits).

Design

Objectives can be to:

1. Generate current status estimates such as area or
volume in a forest, where the forest is, and how it
is distributed, and monitor change in such
parameters.

2. Identify possible cause-and-effect relationships
such as a growth decline in pine forests that could
be due to drought or pollution.

Sampling Frame and Representative
Sampling

Sampling Frame

Each unit in the population should have a positive,
known probability of being selected for the sample so
a list of units in the population, called a sampling
frame, is required. This frame gives for all N units in
the population:

1. The known positive probability of selection, pi,
i¼ 1,y,N for each unit.

2. The joint positive probability of selection, pij, i,
j¼ 1,y,N, iaj for all pairs of units.

In the following we only discuss without replacement
sampling of units since it is more efficient than with
replacement sampling. Potential sample units can
have equal or unequal probabilities and joint
probabilities of selection. One of the big advantages
of unequal probability sampling is that all single-
phase probabilistic procedures used are special cases.
Understanding the concept of unequal probability
sampling will facilitate comprehension of the other
procedures and why and when it is advantageous to
use them. This flexibility leads us to the designs
discussed: SRS, stratified sampling, cluster sampling,
sampling with probability proportional to size (PPS),
and systematic sampling with a random start. We
then discuss estimation so that we have a sampling
strategy consisting of both the sampling design and
the estimation procedure used.

Sample Designs

Unequal probability sampling If pi is the probabil-
ity of selecting unit i and pij is the joint probability of
selecting units i and j, then the unbiased Horvitz–
Thompson estimator of the population total Y is:

uYHT ¼
Xn
i¼1

yi=pi ð1Þ

with variance:

Vð uYHTÞ ¼ 1=2
XN
iaj

wijðyi=pi � yj=pjÞ2 ð2Þ

with wij ¼ pipj � pij:
Unbiased variance estimators are:

v1ð uYHTÞ ¼ 1=2
Xn
iaj

½ðpipj � pijÞ=pij�ðyi=pi � yj=pjÞ2
( )

ð3Þ

and

v2ð uYHTÞ ¼
Xn
i¼1

½ð1� piÞ=p2i �y2i

þ
Xn
iaj

½ðpij � pipjÞ=pij�ðyiyj=pipjÞ ð4Þ

Examination of the above equations for under-
standing If pi¼ kyi, with k a constant, then ŶHT

in eqn [1] is a constant, and Y and V in eqn [2] would
be 0, the ideal situation. This won’t happen in
practice but we can approximate it. For example, we
can practically select trees proportional to their
diameter breast height squared if we are interested
in tree volume and then the ratios yi¼ volume for
tree i/xi¼ basal area for tree i are essentially
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constant, so that (yi/pi� yj/pj)
2 in eqn [2] is close to 0.

Similarly, if we are interested in tree counts, then
giving each tree an equal weight in selection is
efficient. The efficiency of the methods discussed
depends on the strength of the relationship between
the variable of interest y and the covariate x used for
probability of selection, how the covariate is used in
selection, and joint probabilities of units. With this
background on the ideas behind the sampling
designs, we now list them specifically.

Simple random sampling This is the simplest
probabilistic approach. All samples of size n have
the same probability of selection from the N units in
the population. SRS sampling has the advantages that
since all units have the same probabilities of selection,
applicable analysis techniques are easy to implement
and estimation is straightforward and understand-
able, for example when estimating the mean or total
of a population. The estimator of the mean %y is:

%y ¼
Xn
i¼1

yi=n

with sample size n and yi the value for variable of
interest on sample unit i.

An unbiased estimator of the population variance
of the mean is:

vð %yÞ ¼ ½ðN � nÞ=ðNnÞ�
Xn
i¼1

ðyi � %yÞ2=ðn� 1Þ
" #

¼ ½ðN � nÞ=ðNnÞ�s2

where N¼ number of elements in population, s2 is
the sample variance and (N� n)/N is called the finite
population correction. An estimator of the total Y, Ŷ;
would be obtained by multiplying %y by N, so Ŷ ¼ N %y

and its variance would be vðŶÞ ¼ N2vð %yÞ:
In various circumstances we may have complete

knowledge on a covariate associated with the
variable of interest for which we know all the values
in the population or we can get those with relative
ease. Usually this information is combined with the
information on the variable of interest measured on a
subsample of the units in the population. This
information can be used in various manners in
sample selection and in estimation.

Denoting by y¼ variable of interest and
x¼ covariate, numerous sample selection schemes
and estimators are possible.

Stratified sampling This is a simple but powerful
extension of SRS where the population of interest is
divided into subpopulations or strata of interest. The
idea behind stratification is as follows:

1. We are interested in those subpopulations (strata)
too.

2. The subpopulations are internally more homo-
geneous than the population so we can gain
efficiency in estimation by distributing the sample
in a good manner over them.

3. We are thus able to apply different sampling
procedures in the different subpopulations for
convenience.

Estimator of the population mean is:

%yst ¼
Xk
h¼1

Nh %yh=N

with estimated variance of the mean:

vð%y
�
stÞ ¼

Xk
h¼1

ðN2
h=N

2Þ½ðNh � nhÞ=Nh�s2h=nh

where: %yh ¼ sample mean for stratum h, k¼ number
of strata, s2h ¼Pnh

i¼1ðyhi � %yhÞ2=ðnh � 1Þ and Nh and
nh are number of elements in the population and
sample respectively in stratum h.

Cluster sampling In this extension of SRS, clusters
of (say) trees are sampled by SRS. The idea behind
cluster sampling is twofold:

1. It is useful when no list of sample units is
available, as is often true with trees, but lists of
clusters are available or easily constructed (e.g.,
stands or plots respectively).

2. It is usually cheaper to visit clusters of trees than
individual trees as in SRS because travel expense is
often the biggest item in sampling forests.

Ideally, clusters are very heterogeneous, in contrast to
strata, because it is more efficient that way. Usually,
reduced cost is the reason behind cluster sampling.

If we select n out of N clusters at random and each
cluster sampled is measured completely for the
variable of interest, then a biased estimator, %ycl; of
the mean per unit is:

%ycl ¼
Xn
i¼1

Mi %yi:

,Xn
i¼1

Mi

where Mi is the number of units in cluster i, with an
estimator of the variance:

vð %yclÞ ¼ ½ðN � nÞ=Nn�
Xn
i¼1

ðM2
i =M

2
nÞð %yi: � %yclÞ2=ðn� 1Þ

with N¼ number of clusters in the population, n¼
number of clusters selected by SRS, Mn ¼

PM
i¼1 mi=n
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is the average number of units per cluster in the
sample, and %yi: ¼ Yi:=Mi; where Yi: is the total for all
observations in cluster i.

PPS sampling In PPS sampling it is assumed that
there is a covariate (or independent variable) avail-
able which is positively correlated with the variable
of interest and units are selected proportional to the
value of the covariate. The information collected on
the covariate and on the variable of interest are
combined into an estimator such as the Horvitz–
Thompson estimator in eqn [1].

PPS sampling is useful when individual selection
probabilities are nearly proportional to the variable
of interest.

Estimator of the population mean is:

%yHT ¼
Xn
i¼1

yi=ðNpiÞwith estimated variance :

vð %yHTÞ ¼ ð1=2Þ
Xn
iaj

½ðpipj � pijÞ=ðN2pijÞ�ðyi=pi � yj=pjÞ2

with n and N¼ number of elements in the sample
and population respectively and all pi and pij are
assumed to be larger than 0.

Systematic sampling with a random start In sys-
tematic sampling with a random start, a random
starting unit is selected and then every kth unit
is selected. Systematic sampling assumes that the
population can be arrayed in some order, which may
be natural, say, days of the week in recreation
sampling, or artificial, such as numbered plot
locations on a map. The ordering may be haphazard
in the latter case but needs to be carefully considered
in the earlier one. For example, in sampling use of a
recreation area we probably do not want to sample
every seventh day, say every Sunday. Systematic
sampling has not in the past been generally endorsed
by theoretical statisticians because it is not a strictly
probabilistic procedure in that several units have
joint probabilities of selection of 0. But practitioners
and applied statisticians have prevailed in getting it
used widely because it is a very practical way of
collecting information in the field and avoids the
problem of poorly distributed samples in the field, as
can happen with some of the earlier procedures
discussed. Generally, systematic sampling (with a
random start) is treated as SRS, the assumption being
that the variance estimate for SRS should usually give
an overestimate of the variance achieved with
systematic sampling.

Estimator of the population mean is:

%ysyst ¼
Xn
i¼1

yi=n

with variance estimator:

vð %ysystÞ ¼ ½ðN � nÞ=N�s2=n

Note that the formulas are the same as for SRS.

Another estimator Although the Horvitz–Thompson
estimator is quite efficient in many situations, it can be
quite unreliable in some cases. A specific example
involves populations where some of the covariate
values, x, are quite small relative to the values of the
variable of interest, y. It is clear that if some of the
sample units contain y and x values where x is quite
small, for those ratios in the estimator, y/x can be quite
large yielding large estimates. For example, if x¼ 0 for
one or more units, the ratio would be N. Units with
x¼ 0 would not be selected by PPS sampling (causing
bias in the estimation) but would be with SRS. Having
extreme values is a general problem with such mean of
ratio estimators which are generally not recommended
to be used at all with SRS.

In general, more complex – but also more robust –
estimators such as the very general, efficient general-
ized regression estimator developed by C. E. Sarndal
should be used if possible:

Ŷgr ¼
Xn
i¼1

yi=pi þ agr N �
Xn
i¼1

1=pi

 !
þ bgr X�

Xn
i¼1

xi=pi

 !

¼
XN
i¼1

ŷi þ
Xn
i¼1

ei=pi

where:

ŷi ¼ agr þ bgrxi; ei ¼ yi � ŷi

agr ¼
Xn
i¼1

yi=ðpiviÞ � bgr
Xn
i¼1

xi=ðpiviÞ
#" ,Xn

i¼1

1=ðpiviÞ

VðŶgrÞ ¼ ð1=2Þ
XN
iaj

ðpipj � pijÞðei=pi � ej=pjÞ2

and a variance estimator:

vðŶgrÞ ¼ ð1=2Þ
Xn
iaj

½ðpipj � pijÞ=pij�ðe0i=pi � e0j=pjÞ2

where:

ei ¼ yi � ỹs � bgrðxi � x̃sÞ
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and:

e0i ¼ ei � ei ðN̂�NÞ
Xn
l¼1

x2l =ðvlplÞ
"(*

�ðX̂�XÞ
Xn
l¼1

xl=ðplvlÞ
#,

vi

)

þ �ðN̂�NÞ
Xn
l¼1

x2l =ðvlplÞ
"(

þ ðX̂�XÞ
Xn
l¼1

1=ðplvlÞ
#)

ðxi=viÞ
+

� 1
Xn
l¼1

x2l =ðplvlÞ
Xn
l¼1

1=ðplvlÞ
(,*

�
Xn
l¼1

xl=ðplvlÞ
" #29=

;
+

where:

N̂ ¼
Xn
l¼1

1=pl; Ñs ¼
Xn
l¼1

1=ðplvlÞ;

X̂ ¼
Xn
l¼1

xl=pl; x̃s ¼
Xn
l¼1

xl=ðplvlÞ
( ),

Ñs

and:

ỹs ¼
Xn
l¼1

yl=ðplvlÞ=Ñs

The generalized regression is biased but consistent in
the sense that as n-N, the bias goes to 0.

Variance estimation in general Classical variance
estimators discussed above are typically derivable and
usually give unbiased or at least consistent estimates
of the actual variance. In many cases the actual
sampling strategy used is quite complex and such
variance estimators cannot be derived. For such
situations and even in cases where the actual variances
can be derived and computed, other methods can be
used, the best-known one being bootstrapping.

Bootstrapping takes full advantage of the comput-
ing power now available. It is a computer-based
method that allows us to assign measures of precision
to statistical estimates. Confidence intervals can be
constructed without having to make normal theory
assumptions. To illustrate for SRS, if we have a
sample of n units of y, with sample mean %y and
variance vð %yÞ; then in bootstrapping we take B
samples of n units with replacement from the n
sample units. Then, for each of the B samples we
compute means %yb; b¼ 1,y,B with overall mean
*%yB ¼PB

b¼1 %yb=B: The variance between these boot-
strap estimates is: vð %yBÞ ¼

PB
b¼1ð %yb � *%yBÞ2=ðB� 1Þ;

which can also be used for %y: In addition, the B sample
estimates generate a distribution of estimates that can
be used for easy confidence interval construction.
There are various ways of bootstrapping.

Multi-Information Sources and Sampling
over Time

Often covariates are available or information on
them can be more easily and cheaply obtained than
for the variable(s) of interest, but not for all units in
the population, so more than one sampling phase is
required. A voluminous literature is available on this
topic and on sampling over time too (see Schreuder
et al. (1993) in Further Reading, below).

See also: Experimental Methods and Analysis: Bio-
metric Research; Design, Performance and Evaluation of
Experiments. Mensuration: Yield Tables, Forecasting,
Modeling and Simulation.
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