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Introduction

A common representation of forest characteristics
within spatial analysis and geographic information
systems (GIS) can often be found in native objects
whose interactions are based on simple distance and
connectivity relationships. The spatial description of
forest objects can be understood as a continuous
two-dimensional process as an intensity field, or a
collection of discrete locations of spatial objects.
Geometrical features, such as points, lines, polygons,
and raster cells, are commonly used to describe real-
world objects and their characteristics in computer-
ized mapping systems. Data modeling is a process
that simplifies and defines real-world objects as
database objects. Further spatial analysis may be
engaged in when database objects have sufficient
characteristics for spatial analysis.

The quantification of heterogeneity in forest areas
has long been an objective of forest inventory and
management. Heterogeneity depends highly on
scale. The spatial and temporal variation of the
property that can be detected will often depend
on the spatial and temporal scale at which the
property was sampled, and the size of the mapping
unit. The information levels used in forestry
reporting are hierarchically divided into: (1) tree
level; (2) stand level; (3) farm level; (4) region level;
and (5) country level. The data collection is
normally based on measured sample units or
subjective field observations that come from report-
ing units. The spatial pattern of reporting units can
be mapped using remote sensing techniques or field
observations.

The relative spatial distribution of forests and trees
varies, because of changing land use practices,
differences in the fertility of soil, and the hydrology,

competition, and size distribution of trees. It is well
known that the spatial distribution of seedlings in
stands of natural generation depends highly on the
location of mother trees and soil preparation affects
the probability of survival of seedlings. Spatial
information is used in forest inventory planning,
and the construction of growth models and problems
relating to forest regeneration and thinning. For
example, the predictors of a spatial growth model for
drained peatlands normally include variables such as
the distance between the tree and the nearest ditch.
The optimal sampling design of forest inventory can
be defined if a spatial pattern of large variation is
known and the size of a sample unit can be
determined when the probability of tree occurrence
can be modeled. Different indices and techniques
have traditionally been applied to seedling surveys, in
order to find out if the spatial distribution of seedling
and saplings is regular. In addition, the effectivity of
thinning and stand growth estimates depends highly
on spatial regularity.

There are many forestry variables that are spatially
sparse and scattered. This is often the case when one
is assessing coarse woody debris in managed forests,
or surveying threatened species. The spatial descrip-
tion of sparse populations can also be problematic.
On the landscape level, information about spatial
distribution of different key habitats and areas with a
high ecological value has also been used to assess the
probability of existing rare species. Field data about
indicator species and remote sensing data about
landscape features are valuable a priori information
for estimating the presence/absence probability and
for stratifying areas of interest.

Spatiality of Trees

The simplest point process model that can be used
for the spatial pattern of trees is the Poisson process,
which is typically used to produce random Poisson
forests and when there is no interaction between the
locations of trees. There are several modifications
that stem from the basic model, such as the
inhomogeneous Poisson processes, the Poisson clus-
ter processes, and the doubly stochastic Poisson
processes. The location of seedlings after natural
regeneration is often generated using the Poisson
cluster processes. Lattice-based processes are suitable
models for spatial patterns of trees in plantations.
Pair correlation processes produce patterns in which
points either ‘reject’ (regular) or ‘attract’ (clustered)
other trees to each other. Hard-core processes reject
other trees with such a high intensity that other trees
cannot exist closer than the radius of the core area.
The Markov point processes and the Gibbs process
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are often used as well, because interactions between
trees can be sufficiently modeled and empirical data
can be used to create a probability model.

Different kinds of indices can also be used to
measure the deviation of the given tree pattern from
the Poisson forest. These methods of analysis can be
divided into three groups depending on the measure-
ments done regarding the population:

1. Number of trees within plots are counted.
2. The distance from tree (or random point) to

closest tree is measured.
3. All trees in the forest are mapped.

The methods of the first two groups are more
suitable for field work, while the latter group gives
detailed information about the underlying process,
and allows for the estimation of parameters neces-
sary to begin a selected point process. The known
field methods include the index of dispersion and the
distance-based indices. Ripley’s K, Moran’s I, and
Geary’s C are commonly used for testing randomness
or clusterness of tree patterns, although Moran’s I
and Geary’s C have mostly been used for character-
izing the autocorrelation. When permanent sample
plots of Finland were analyzed, 57% of the plots had
a regular tree pattern, while 25% were random, and
18% were clustered. When the basic pattern of trees
is identified, it can be utilized directly to determine
the sampling unit and design.

One common example in forestry would be the
stand representation of discrete forest patches, and
the partition of forests into distinct classes or strata.
The discrete model is usually adopted when the
boundaries of units can be unambiguously deli-
neated. This happens, for example, when there are
sharp discontinuities in attribute values. The delinea-
tion of stands is typically guided by three criteria: (1)
the forest characteristics in different parts of the
stand should be similar; (2) the stand should be a
practical management and harvesting unit; and (3)
the stand should be identifiable to allow for the
monitoring and updating of information. Because
these criteria can be contradictory, one or more of
them are often compromised, and an estimation of
stand values is often based on the simple summation
of sample data, an approach which sometimes masks
substantial variations found within discrete forest
stands. This spatial autocorrelation can be studied
using a dense network of sample plots within an area
of interests, and correlograms/semivariance of vari-
able of interest can be estimated using localized
sample plot data. The spatial autocorrelation within
forest stands is larger in forests with regular tree
patterns than it is in forests with random or clustered

tree patterns. In Finland, some studies indicate that
within stands, the autocorrelation for the basal area
and growing stock volume of trees only exists within
a 20–30m distance, while 5–10m distance intervals
are used. The continuous description of forest
characteristics has not received much attention in
the forest resource inventory.

Spatiality of Landscapes

Habitat mosaics have been found to affect diversity
and dynamics in both pristine and managed boreal
forests, and many important processes have also been
identified as being driven or affected by landscape
heterogeneity. Efforts to quantify the spatial hetero-
geneity of landscapes began in the 1980s, but have
accelerated in recent years, so that at the present there
are hundreds of indicators that allow for some sort of
quantification of various aspects of spatial hetero-
geneity at a landscape level. Thematic maps and
satellite image-based products have also been used to
estimate landscape indicators on a regional level.

Composition

Composition is typically indicated by the number of
categories or classes in the map, the proportion of
each class in the map, and the presence of diversity.
Diversity measures typically combine two compo-
nents of diversity: richness, which refers to the
number of classes present, and evenness, which
refers to the distribution of objects that are among
the classes. Typical diversity indices are Shannon’s
and Simpson’s.

Spatial Configuration

Spatial configuration of properties attempts to
describe the spatial characteristics of individual
patches, and the spatial relationship among multiple
patches. Patch-based measures of pattern include
size, number, and the density of patches. Useful edge
information includes the perimeter of individual
patches and various edgemetrics that incorporate
the contrast between the patch and its neighbors. For
example, there is less contrast between a mature
forest stand and a young stand than there is between
a mature stand and clear-cut areas. Patches can take
a variety of shapes, making shape difficult to
quantify. Most shape indices use a perimeter–area
relationship. A widely used index related to both
patch size and shape is the ‘core area,’ which is
the proportion of a patch that is further than the
specified distance from an edge. Patch cohesion has
been proposed to quantify the connectivity of habitat
as perceived by organisms dispersed among binary
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landscapes. Some pattern indices examine spatial
neighborhoods, patch orientation, and isolation.
These were developed primarily to predict the
relative connectivity of habitat islands.

Contagion

Contagion is designed to quantify both composition
and configuration. It measures the extent to which
cells of similar classes are aggregated. It is calculated
using the frequencies with which different pairs of
classes occur as adjacent pixels on a map. This
appears to summarize the overall clumpiness of areas
of interest.

It has been shown that there are only five
independent factors among 55 different landscape
metrics. These are:

1. Number of classes.
2. Dominance.
3. Contagion.
4. Fractal dimension from perimeter/area.
5. Average patch perimeter/area ratio.

In Finnish forests, landscapes are transformed into a
mosaic of managed forest stands of small size, in
which species composition has become more homo-
geneous, and the age distribution of stands more
even. Low values of contagion characterize the
Finnish landscape, which is dominated by many
small size-dispersed patches. The development of
species occurrence and landscape level habitat mod-
els, based on National Forest Inventory (NFI) data
and environmental information at the national level,
highlight small variations among the indicators. This
seems to have important implications for the spatial
distributions of species. Landscape metrics has been
proven to be an efficient method of monitoring forest
characteristics, which might have important applica-
tions for management planning in order to improve
forest biodiversity.

Spatiality of Regions

On a national level, both correlation and autocorrela-
tion functions have been employed to study large
structures of forest area, and volume of forests. In
Scandinavian forests there is a slightly increasing auto-
correlation almost until a 200m distance, when larger
distances are applied. This information is used to
estimate the optimal distance between inventory tracts,
the overall shape of the tract, and the distance between
sample plots within tracts. To obtain a sufficient
sampling set-up for the entire nation of Sweden, the
country is divided into five regions with marginally
diverse correlation functions for different variables.

The final sampling design is based on their spatial
characteristics and other practical considerations.

The correlograms (Figure 1) have also been used to
estimate the standard error as regards large areas.
The standard errors of systematic cluster sampling
can be estimated using model-based estimators,
which utilize the parameters of correlation functions.
That way, the information about spatial dependency
can be utilized in error estimation and spatial
structure of forests is taken into account.

Border Effects in Spatiality

Spatial analysis is always connected to edge effects.
In addition, edge effect correction methods are often
used in inventory procedures, as well as in the
analysis of limited empirical data sets. Four main
methods are typically applied:

1. Plus sampling: additional data is measured, so that
entire neighborhoods can be covered.

2. Minus sampling: buffer zones with a plot radius
are generated for neighborhood calculation, and
sampling is made in the core area only.

3. Toleroid edge correction, or mirror-sampling: an
edge zone with plot radius is copied to the edge
buffer, and the neighborhood is calculated from
‘duplicated data.’

4. Weighting of observations: neigborhood data are
weighted according to the probability of informa-
tion existence.

Spatial Information in GIS and
Remote Sensing

A forest information system contains information for
decision-making in forestry, and forest inventory
yields data for such a system. The initial and most
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important phase of the forest database system design
is the construction of a data model, which is
primarily used to perceive, organize, and describe
data in a conceptual schema. Real-world objects are
defined in the data model in such a way that they can
be described in databases (Figure 2).

Each observation and measurement in a system is
linked to the geometry of GIS. The geometry of
forestry objects can be presented using vector (point,
line, polygon), raster, and dynamic segment-based
models (Figure 3). Vector-based description is typi-
cally used for discrete phenomena (i.e., stand border
maps) and raster-based systems (i.e., stratification of
volume, elevation) do their best when continuous

spatial surfaces are presented. Dynamic segmentation
is used for objects which locate near line features, and
can be located using the distance measure from
known location along the line. Such a feature could
be a hydrographic measurement unit along a river
that has a particular distance from a known crossing.

The requirements for interoperable, computation-
ally scalable software tools suggest the need for
developing open software standards such as the
Open GIS Consortium (www.opengis.org). The
current Open GIS data model supports geometrical
primitives, but requires application-specific defini-
tions from the user side, as well as support for
advanced analysis, which needs to be built externally.

Tree tally sheet

Plot # 38

Forest type   MT

Species d1.3 h quality

Spruce 23 18 2
Birch 35 22 3

Other 12   8 1
.... .... .... ....

Data collection      Database
observed values

Application

Obs
Unit IntValValue

152 41

51

4

263 23
5218

532

266

263

263
35

266
266

22

3
270 12
270  8
270 53

52
51
53
52
51

1

Plot # 38

Forest type  MT

Species d1.3 h volume

Spruce 23 18 200
Birch 35 22 300
Other 12  8 124

............ ....

Measurement
object

Species Count
Bear 20
Wolf 40

Moose 5600

.... ....
Beaver 170

Blueberry

District # 2

Wildlife

Plant survey

Plot # 38

Species Cover (%)

70

30

10
.... ....

.... .... ....

.... .... .... ....

.... .... ....

.... .... ....

Square # 5

Wood
anemone

Mezereon

1005 34170
1005 35730
1005 33110

4729 74520
4729 73240
4729 7415600
4729 760170

District Bear Wolf Moose

1 10 2100
2 20 40 5600
3 50 80 11500

.... .... .... ....

Wildlife

Plot # FT

38 MT Blueberry
Species Cover (%)

70

30

10

Wood
anemone
Mezereon

38 MT

38 MT

Plant survey

5

Figure 2 Storage structure for forest inventory attribute data. Reproduced with permission from Tokola T, Turkia A, Sarkeala J, and

Soimasuo J (1997) Entity-relationship model for forest inventory. Canadian Journal of Forest Research 27: 1586–1594.
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Remote sensing is considered to be an efficient tool
for data acquisition and the updating of information
into forestry GIS system. Yet, the remote sensing
sensors can vary a lot, and it is important to realize
that the spatial dependency of forest objects also
affects the data collections phase.

When the pixel size is larger than the forest
objects, information is perceived to be lost because
the spatial resolution of images is so low. In contrast,
when very-high-resolution images are used, adjacent
pixels give the same information, because it is highly
probable that they are taken from the same object.
Another drawback of high-resolution data is that the
amount of data soon becomes too enormous to
compute. A worst-case scenario occurs when the use
of unsuitable resolution results in erroneous image
interpretation, due to the spatial autocorrelation of
neighboring pixels. Good examples are the Landsat
MSS images which have strong positive autocorrela-
tion between neighboring pixels. It has been found
that there are three reasons for this phenomenon: (1)
a natural continuity of land cover, compared to the
spatial resolution of the imaging system; (2) a
positive correlation caused by the imaging system
itself; and (3) image processing algorithms such as
resampling. Studies with Landsat MSS images have
indicated that the radiance of one pixel can affect the
radiance of surrounding pixels that are 4–6 pixels
apart. With higher-resolution systems like Landsat
TM and SPOT, the positive autocorrelation can be
even higher. The autocorrelation of pixel gray values
in a forest environment is usually clear, and depends
on the crown sizes and crown cover proportions of
the trees. When semivariograms derived from aerial
photographs have been studied in boreal areas,
spatial resolution in which the variance was max-
imized was 2–4m. Principally, such results have
indicated that the local variance curve maximum is
dependent on the object size, and a maximum is
reached when the resolution is somewhat smaller

than the object size. Nowadays, single tree-based
digital delineation techniques are often used in
various remote sensing materials, and 0.5m resolu-
tion image material is generally used during these
interpretation processes.

Satellite image-based surveys often utilize distant
field sample plots from target areas. Normally, the
margin of error increases when distant field sample
plots from existing field samples are used. In one
study, the best results were achieved when plots were
within a 20-km range. Stand margin areas are also
critical in remote sensing. The accuracy of growing
stock volume estimation near a stand edge can be
much lower than it will be inside the stands.

Simulated Forests

Simulation models of landscape levels are needed to
understand large-scale variation, as well as predict
the development of forests under different manage-
ment schemes.

Alternative sampling designs for forest inventories
can be evaluated through several means. One way
involves carrying out actual manual inventories in the
target forest. Computer-simulated samplings offer a
cheaper and more flexible option for this. Following
the first inventory round, it is possible to use remote
sensing data to create a computerized depiction of the
selected target area. The main advantages of such a
simulation are that by manipulating input variables, a
process of controlled experimentation and sensitivity
analysis can take place. In spite of certain disadvan-
tages, a simulation approach provides a flexible
method for experimentation with prospective sam-
pling designs, and is free from the restrictions asso-
ciated with the analytical error propagation methods.

Using simulated sampling designs, changes in the
sampling error of the estimate can be examined, and
one can discover the best cluster design. In the
simulation approach, all local small-scale character-
istics of spatial variation can also be included in the
analysis. In numerous other studies, entire spatial
variation has been described by using the average
covariance function. Certain simulation models use
satellite image-based simulated models of forests.
These models normally show a moderate fit with the
field data. This type of model can also be used to test
different sampling designs for carrying out forest
inventory, and seemed to be representative in terms
of the sampling error of estimate when compared to
the overall structure of the spatial distribution of a
given forest.

The standwise interpretation result of small-scale
remote sensing materials does not vary within forest
stands, and the correlation between neighboring

Figure 3 Vector-, raster-, and dynamic segmentation-based

models are used to describe the geometry of real-world objects

within global information systems. Reproduced from Tokola T

and Kalliovirta J (2003) Paikkatietoanalyysi. Publications 34.

Helsinki, Finland: Department of Forest Resource Management.
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satellite image pixels is relatively high. This correla-
tion is caused by observation characteristics of the
satellite sensor. While the small-scale accuracy of
Landsat TM interpretation is low, and the tree-level
information is missing, the main focus of this type of
inventory planning concentrates on the shape of
clusters and distance between plots. If small-scale
variation was available, it could also perhaps
determine the size and shape of plots. Unfortunately,
fairly detailed aerial photographs would be needed, if
we wished to see a true realization of stand structure
taken using remote sensing material.

Most approaches to creating spatially explicit
simulations of forest landscapes have been developed
in North America, yet a large amount of simulators
are available for specific purposes. They have been
used to demonstrate the effects of different potential
disturbance regimes, and for planning alternative
forestry management schemes. Trying to make
predictions as regards landscape scale, one has to
deal with all of the ecological site types and tree
species as well as all possible stand development
scenarios. In addition, landscape-level processes have
to be incorporated. One solution to such difficulties
has been to simplify the description of forest stands
by discarding most of the quantitative attributes,
such as stand basal area or size of trees, and to use a
semiquantitative approach to describe tree stands by
the age structure of each tree species. It is important
to note that the purpose of simulation models is not
necessarily to predict reality directly, but rather to
reveal the logical consequences of the assumptions
incorporated in the structure of application-specific
computer models and parameter values. Complex

spatial models are indeed hard to evaluate, because it
is difficult to find sufficient empirical data sets, as
well as to compare exactly which aspects of
spatiotemporal patterns are crucial for either a
correct simulation, or a future model application.

See also: Inventory: Forest Measurements; GIS and
Remote Sensing; Large-scale Forest Inventory and
Scenario Modeling; Multipurpose Resource Inventories.
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