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1. INTRODUCTION 

In forested regions where the principal agent of stand regeneration is fire (e.g., 
in boreal forests), the spatial mosaic of stands depends on the frequency and ex
tent of fires in the past. To some extent, knowledge of the spatial mosaic can be 
used to make inference about past fire frequency. This chapter deals with sta
tistical methodology for such inference. Given complete knowledge of fire his
tory, one could, in principle, reconstruct the spatial mosaic. In contrast, knowl
edge of the current spatial mosaic is not sufficient for complete knowledge of 
past fires. The reason for this is that evidence of fires in the past can be obliter
ated by subsequent fires burning over all or part of the extent of the earlier fires. 
The present spatial mosaic provides complete evidence of only the most recent 
fire or fires; it provides decreasing information about fires more distant in time; 
and of very early fires, little or no evidence may remain. 

A time-since-fire map is closely related to the spatial mosaic and gives the 
time since the most recent fire at every point in a study area. In contrast a time-
since-fire sample contains only the time since the most recent fire at a sample of 
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points (drawn according to some well-defined sampling plan) from the study 
area. Usually because of the limitations of techniques of dating stand origins or 
past fires, the time-since-fire observations are grouped into classes (often of 
width one decade). In this chapter statistical methodologies for analyzing time-
since-fire map and sample data will be discussed. The main issues addressed are: 

• methods of graphical data analysis of such data; 
• estimation of fire frequency at distinct epochs in the past. Likelihood 

methods will be used to obtain point estimates and confidence intervals. 
• testing for the significance of changes in fire frequency at specified 

times; 
• determination of when (possibly multiple) changes in fire frequency 

may have occurred. 

The methods presented collect and summarize recent research in this area. 

II. GRAPHICAL ANALYSIS 

A great deal of information about historical fire frequency can be obtained by 
simple graphical analysis. For time-since-fire map data, one can plot cumulative 
proportional areas, with time since last fire ^ t, on a logarithmic scale, against 
time t (on a natural scale). The lower panels of Figures 1, 3 and 4 are examples 
of such plots. For sample data, the same procedure can be followed using the 
cumulative proportion of sample points with time since last fire ^ t (Fig
ure 2). If the hazard of burning has been both age-independent and time-
homogeneous, the points on the plot should lie close to a straight line with 
negative slope (equal to the hazard of burning), since at any point the proba
bility that the most recent fire occurred t or more years ago is e~^\ where A is 
the hazard of burning. Abrupt changes in the plot suggest temporal changes in 
the hazard of burning. For example, if the hazard of burning changed at some 
distinct change point (as might possibly have occurred for example at the time 
of European intervention), then one would expect a sharp elbow in the plot at 
that point. Thus a plot which naturally divides into a number of straight line 
segments suggests a number of distinct historical epochs of roughly constant 
fire frequency, with the changes in fire frequency occurring at times determined 
by the points of intersections of adjacent segments. By comparing such plots for 
different subsets of the study area (e.g., broken up spatially or by aspect) one 
can get a good idea of whether historical fire frequency was homogeneous or 
not with respect to these categories. 

Even though the vertices and slopes of line segments determined graphically 
provide rough estimates of change points and intervening fire frequencies, it 
is desirable to have more objective statistical methodologies for accomplish
ing this. Subsequent sections of this chapter describe such methodologies. 



o 

Boundary Waters Canoe Area 

100000 
•D 
0 
C 

CO 

60000 H 

20000 

Lilfl 11 j i Ji 1,1 1 
100 200 

Time since fire 

300 

^ i.oooo-f 

0.0100-

0.0001 H 

100 200 

Tinne since fire 

300 

FIGURE 1 Time since last fire for Boundary Waters Canoe Area (Heinselman, 1973). The top 
panel shows the areas (on vertical axis in hectares) with given time since last fire (horizontal axis 
in years). The bottom panel plots the cumulative proportional area (on logarithmic scale) with time 
since fire exceeding the time (in years) on the horizontal axis. 
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FIGURE 2 Cumulative percent of sample points (on logarithmic scale) with time since fire ex
ceeding the time (in years) on the horizontal axis for time-since-fire sample data of Wood Buffalo 
National Park (Larsen, 1996). 
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FIGURE 3 Time since last fire for Kananskis Watershed (Johnson and Larsen, 1991). The top 
panel shows the percentage area (on vertical axis) in given time-since-fire class (horizontal axis in 
years). The bottom panel plots the cumulative percentage area (on logarithmic scale) with time 
since fire exceeding the time (in years) on the horizontal axis. 

However, the problem is approached in stages. First, the problem of obtaining 
maximum likelihood estimates (MLEs) of the hazards of burning prevailing 
between prespecified change points is addressed, along with how to obtain 
approximate confidence intervals and tests for the significance of the change 
points. This is done for both map and sample data. Following this, the question 
of determining change points from the data alone is addressed. 

III. STATISTICAL INFERENCE WITH 
PRESPECIFIED CHANGE POINTS 

We assume that the observations whether for map or sample data are binned 
into time-since-fire classes 1, 2, . . . , m, which are of equal width, say T years, 
save for the oldest which is open-ended. Specifically, assume that the classes 
1, 2 , . . . , m — 1 are defined by time since last fire in the intervals [0, T), 
[T, 2T),. . . , [(m — 2)T, (m — 1)T), respectively and that class m is defined by 
time since last fire greater than or equal to (m — 1 )T. In practice, the resolution 
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FIGURE 4 Time since last fire for Glacier National Park (Johnson et al, 1990). The top panel 
shows the percentage area (on vertical axis) in given time-since-fire class (horizontal axis in years). 
The bottom panel plots the cumulative percentage area (on logarithmic scale) with time since fire 
exceeding the time (in years) on the horizontal axis. 

of dating fires is no finer than one year, so T will be a positive integer (often 
T = 10 or 20). 

Under tfie assumption of homogeneity, at any given location in the study 
area, the probability that the time since last fire belongs to class j can be de
termined in terms of the hazards of burning prevailing at and since that last 
fire date, by observing that to belong to class j , there must have been a fire 
between (j — 1)T and jT years ago, and subsequently no fire. Specifically, it is 

-^~\^Tr (1 — e~ ^) = 6j, say, where Â^̂  is the instantaneous hazard of burn
ing between (i — 1)T and iT years ago. With known change points, the pa
rameters Â̂% for i = 1, 2 , . . . , m, can be expressed in terms of parameters rep
resenting the hazards of burning in the epochs between the change points. For 
example, with no change points, all the Â '̂  are equal to the assumed constant 
hazard AQ, say. If there were one change point pT years ago, with a hazard of 
burning A2, say, prevailing before that time and Â , since that time, then 
Â '̂  = Al for i = 1, 2 , . . . , pT and Â*̂  ^ A2 for i = p + 1, p + 2 , . . . , m, etc. 

To estimate by maximum likelihood the parameters representing the hazards 
of burning in the epochs between the change points, one needs to construct a 
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likelihood function [i.e., determine the probability of the observed areas (or 
frequencies of sample points) falling in the various classes] in terms of these 
parameters. If one could reasonably assume independence between points in 
the study area, with respect to time since last fire, the likelihood function could 
be obtained directly from the multinomial probabability distribution. How
ever, such an assumption is not reasonable because of the fact that fires spread 
spatially. To reflect this fact, one needs a model for the distribution of areas in 
time-since-fire classes which exhibits a contagion effect. Two approaches have 
been used to date to accomplish this. One is to use a parametric model (the 
Dirichlet distribution) for the areas in time-since-fire classes. This provides a 
likelihood directly for map data (Reed, 1994), whereas a likelihood for sample 
data can be obtained by computing the (marginal) probability of observing the 
observed frequencies in the various classes, assuming that the proportional ar
eas follow the Dirichlet distribution. This leads to a likelihood of the form of 
the Dirichlet compound multinomial distribution, which is the multivariate ana
logue of the widely used beta-binomial distribution (Reed, 1998). 

The other approach, which in many ways is more straightforward, is to in
corporate the contagion effect by using an overdispersed multinomial model with 
corresponding quasi likelihood (Reed et al, 1998). This is based on the as
sumption that the contagion effect, due to spatial spread of fires, has no effect 
on the expected areas (or frequencies) in the time-since-fire classes, but it does 
have an effect on the variances-covariances, inflating them by a constant fac
tor. This second approach is more general in the sense that the Dirichlet dis
tribution for proportional areas, and the resulting distribution for frequencies 
of sample points, are both overdispersed multinomial distributions themselves 
(Reed, 1998). Which of the two approaches is superior in any given context is 
not known. This issue could probably be resolved by studying the performance 
of the two methods using simulated data. However, to date such a study has not 
been undertaken. In this chapter, we concentrate on the overdispersed multi
nomial approach. One advantage is that analytic expressions can be obtained 
for maximum likelihood estimates of epochal hazards of burning and for their 
standard errors. There is a simple interpretation of the MLEs, and furthermore 
they agree well with the graphical estimates. In contrast, using the Dirichlet 
model approach, numerical maximization is required to obtain MLEs of the 
epochal hazards of burning, and it is not possible to obtain a simple interpre
tation of the estimates. 

A. CONSTRUCTING A QUASI LIKELIHOOD FOR 

AN OVERDISPERSED MULTINOMIAL MODEL 

For data from an overdispersed multinomial distribution in which there is a 
constant inflation factor (overdispersion parameter, a^) for all variances and co-
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variances, one can construct a quasi likelihood function of the form 

where for map data yj = Aj/{ 2]!=i Aj), the proportional area in class j , and for 
sample data, with frequencies jj, y^ = fj/{^^=ifj), the proportion of the ob
servations in class j . The overdispersion parameter a^ will differ for map and 
sample data. In most respects regarding model parameters (other than a^), the 
quasi likelihood behaves like an ordinary log likelihood. Thus, one can find 
MLEs by maximizing the quasi likelihood and obtain approximate standard 
errors from the observed (quasi) Fisher information matrix (Hessian matrix of 
second derivatives of quasi likelihood at the maximum). 

Simple analytic expressions are available for the MLEs of the hazards of burn
ing in distinct epochs. For example if there is only one epoch (i.e., the same 
hazard of burning AQ is assumed to have prevailed at all times in the past), then 
from differentiation of the quasi-likelihood it is easy to show that the MLE is 

Ao = (-1/T)log(qo) 

where 

^0 

and 

2m 

} = 

^m-l y m - i 

i=j+l 

is the proportional area (or proportion of the observations, for sample data) 
with time since last fire at least jT, for j = 1, 2 , . . . , m — 1. Furthermore, the 
approximate variance of the estimator qo is 

,(S7=?Sj)(2;=?yj) 
var(qo) - (T - — ^ 

( 2 j = i Sj_,y 
If it is assumed that there are several epochs with distinct hazards, say Ai be

tween 0 and piT years ago, Aj between p^T and pjT years ago, etc., then the 
MLEs of the separate hazards of burning can be found in a similar way. For ex
ample, if there are two epochs separated by a single change point pT years ago, 
then for the more recent epoch 

Ai = (-l /T)log(qO 

and for the earlier epoch 

X, = {-l/T)log{q2) 
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where 

Furthermore, these estimates are independent and have approximate vari
ances given by 

var(qi) - (7 . ^ p 3 ; var(q2) - cr - — n 

To use these variance formulas to obtain standard errors and confidence in
tervals for the hazard of burning, etc., one needs to estimate the overdispersion 
parameter a^. This is usually done using the Pearson estimate, which for map 
data is 

m-r- ipte^{i -e;) 

where d^ is the MLE of 6^ and r is the number of epochs. With a single hazard of 
burning assumed to have prevailed at all times past, the MLEs of the cell prob
abilities are 6j = (1 - ^o)^/)"\ j = 1, 2 , . . . , m - 1 and 6^ = ^o""^- With two 
epochs, they are ^̂  = (1 - q i ) q r \ J = 1, 2 , . . . , p, ^̂  = (1 - ^2)^1 q2~^'\ j = 
p + 1,2, . . . , m — 1 and 6,^ = qf q^"^~\ Similar formulas hold when there are 
more than two epochs. 

An approximate 100(1 — a)% confidence interval for the hazard of burn
ing in epoch r can be obtained from the confidence interval for q,, which is 

q, ± Z«/2V(6-^/o-^)var(q,) 

where Za/i is a percentage point from the standard normal distribution. The 
transformation q —> ( — 1/T) log(q) will convert this to a confidence interval for 
the hazard of burning and q ^ ( —T)/(log(q)) will convert it to a confidence in
terval for the fire cycle. 

A test for the significance of a change point between epochs can be con
structed by computing the liklelihood ratio (LR) statistic. Specifically, one com
putes the test statistic 

A = 24(Qi - Qo) 
a 

where Qi and QQ are the maximized quasi likelihoods assuming the change 
point present and not, respectively, and &l is the Pearson estimate of a^ com
puted with the change point present. The null distribution of this statistic from 
which a P-value can be obtained is approximately Fi^_^_i where v is the num-
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ber of epochs when the change point is present. An important point to note 
here is that, because of the problem of selection bias, this procedure is not valid 
if the change point is suggested from an examination of the data, e.g., from a 
graphical anlysis (Reed et al, 1998). One can also use a LR statistic to construct 
confidence intervals for the epochal hazards of burning (or fire cycles) using 
the method described in Reed et al. (1997). 

Example 1. Map Data. Boundary Waters Canoe Area 

Figure 1 shows the time-since-fire distribution for the Boundary Waters Canoe 
Area, from the maps obtained by Heinselman (1973) in his pioneering fire his
tory study. Since fires are dated to the year, the cell width here is T = 1. Euro
pean settlement in the area first occurred in the 1860s, and there appears to be 
a change in the slope of the semi-log cumulative frequency plot around this 
time (a little more than 100 years ago). Assuming a single change point in 1865 
yields the following maximum likelihood estimates of the hazards of burning 
and corresponding fire cycle (with approximate 95% confidence intervals): 

Epoch 1 (1865-1971): Â  = 0.00883 p.a., FCi - 113 (73-245) yr 
Epoch 2 (before 1865): A2 = 0.0121 p.a., FC2 = 83 (42-3915) yr 

The overdispersion parameter is estimated as 0.0593. 

Example 2. Sample Data. Wood Buffalo National Park 

Larsen (1996) reported a detailed study of the fire history of Wood Buffalo Na
tional Park, a 45,000 km^ area of boreal forest straddling the border between 
Alberta and the Northwest Territories. Larsen determined (to the nearest year) 
the time since last fire at 166 randomly selected sites. These are displayed in Fig
ure 2 with m = 300 classes of width T = 1 year. The graph suggests a change 
point at p = 129 years ago (1860). Assuming this to be the case, the maximum 
likelihood estimates of the hazards of burning and corresponding fire cycle 
(with approximate 95% confidence intervals) are: 

Epoch 1 (1861-1989): Ai = 0.0142 p.a., FCi = 70 (58-90) yr 
Epoch 2 (1860 and earlier): A2 = 0.0292 p.a., FC2 = 34 (23-69) yr 

The overdispersion parameter is estimated as 0.0106. 

IV. THE EFFICIENCY OF 
SAMPLE VS. MAP DATA 

Map data corresponds to a complete census of the study area. Since one can ob
tain estimates of past fire frequencies using observations on time since the last 
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fire at only a random sample of points in the study area, an obvious question is 
how much precision is foregone by determining time since fire at a sample of 
points rather than everywhere in the study area. Of course, the reasons for col
lecting time-since-fire map data extend beyond the estimation of historical fire 
frequency. These issues are not addresssed here. Rather, attention is confined to 
assessing the relative statistical efficiency of using sample vs. map data for such 
estimation. 

To this end, suppose that the proportional areas over the whole study area 
Uj = Aj/{ 2j=-i Aj) follow an overdispersed multinomial distribution with over-
dispersion parameter al < I. Under this assumption, 

var(aj) = aldj{l - Oj); cov(ai, Uj) = -crlefij 

By first conditioning on the proportional areas a^ one can show that for n time-
since-fire observations at a random sample of points in the study area, the pro
portional frequencies yj = fj/n in the m classes follow an overdispersed multi
nomial distribution with overdispersion parameter 

crl = ^[l + ( n - 1 V ^ ] > C 7 ^ 

The quasi Fisher information matrix I, which is obtained as the expected value 
of the Hessian matrix of second derivatives of the quasi likelihood, provides a 
measure of the precision of the MLEs. It is easy to show that this information 
matrix for map data, JQ say, differs from that for sample data, Î  say, only by the 
scalar multiplicative constant, that is. 

cr, 

a 

2 

1 

The relative efficiency (ratio of variances of estimators) for sample data relative 
to map data is, thus, 

al nal 
Rel. Eff. =-i = , ' . 

a\ 1 + (n - l)al 

which is easily confirmed to be less than one and converging to one as sample 
size n ^ oo (i.e., estimates based on sample data will have lower precision than 
those based on map data) but will approach the latter as sample size grows large. 

One can substitute an estimate for a^ in this expression to assess the loss in 
precision by using sample data. 

Example 1 (continued). Boundary Waters Canoe Area 

The estimate of the overdispersion parameter for these data was a^ = 0.0593. 
Table 1 gives estimates, using this value, of the relative efficiency of sample data 
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TABLE 1 Estimated Relative Efficiency of Using Sample Data (sample size n) vs. Map Data 
for Boundary Waters Canoe Area and Ratio of Expected Widths of Confidence Intervals 

Sample size n 10 20 50 100 200 500 1000 
Rel. eff. 0.39 0.56 0.76 0.86 0.93 0.97 0.98 
Ratio of C.I. widths 1.61 1.34 1.15 1.08 1.04 1.02 1.01 

(for various sample sizes n) vs. map data and the ratio of (expected) widths of 
corresponding confidence intervals. It is clear that a sample of moderate size 
(100 to 200) would be almost as good as a complete map, in terms of the pre
cision of estimates. The expected width of confidence intervals would be only 
8% greater with n = 100 and only 4% greater with a sample of size n = 200. 

Example 2 (continued). Wood Buffalo National Park 

Larsen (1996) determined time since last fire at n = 166 sample points in Wood 
Buffalo National Park. The overdispersion parameter for a sample of this size 
was estimated as aj = 0.0106. Thus, an estimate of the overdispersion parame
ter for map data is aj = (166 X 0.0106 - 1)/(166 - 1) = 0.0046. Note that 
this estimate is smaller by an order of magnitude than the corresponding esti
mate for the Boundary Waters Canoe Area, suggesting a much smaller contagion 
effect (and thus a finer patch mosaic) in Wood Buffalo than in the Boundary 
Waters. Using this estimate, one can assess how much precision was foregone 
using a sample of points rather than a complete map survey and how the pre
cision of estimates from sample data depends on sample size. Table 2 gives in
formation on this. 

The results suggest that confidence intervals would be about one third 
shorter if map data had been obtained. Unlike the case of the Boundary Waters, 
where relatively small samples could provide precision comparable with map 
data, for Wood Buffalo such small samples would not be adequate. For example, 
for the Boundary Waters, a sample of size 50 would yield confidence intervals 

TABLE 2 Estimated Relative Efficiency of Using Sample Data vs. Map Data 
for Wood Buffalo National Park and Ratio of Expected Widths of Corresponding 
Confidence Intervals (second row) 

Sample size n 
Rel. eff 
Ratio of C.I. widths 
C.I. width rel. to actual 

10 
0.044 
4.76 
3.13 

20 
0.085 
3.44 
2.27 

50 
0.19 
2.31 
1.52 

100 
0.32 
1.78 
1.17 

166 
0.43 
1.52 
1.00 

200 
0.48 
1.44 
0.95 

500 
0.70 
1.20 
0.79 

1000 
0.82 
1.10 
0.73 

The last row is the ratio of width of confidence intervals using sample size n and actual sample 
size 166. 
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only about 15% wider than map data; for Wood Buffalo, such a sample size 
would yield confidence intervals 130% wider than map data (and 50% wider 
than those obtained with the actual sample size, 166). The reason for the differ
ence lies with the order of magnitude difference in the overdispersion parame
ter estimates. With greater contagion, and on average larger patches in the time-
since-fire mosaic in the Boundary Waters, a relatively small number of sample 
points can, with high probability, provide information on most patches. On the 
other hand, with the smaller contagion parameter and finer patch mosaic in 
Wood Buffalo, one needs many more sample points on average to cover most 
patches. 

V. DETERMINING EPOCHS OF 
CONSTANT FIRE FREQUENCY 

In the previous sections, it was assumed that the number of epochs, with con
stant hazard of burning, and the change points dividing them were known. Most 
often, this will not be the case, and one will face the problem of determining 
the epochs from the data. This section provides a brief description of a method
ology for accomplishing this. 

From the statistical point of view, determining the number and location of 
the change points (i.e., determining the epochs) is a problem in model identi
fication, analagous to deciding which regressor variables should be included in 
a regression model. There are a number of ways to approach such problems. 
One is to use some sort of iterative procedure in which change points can be 
added or removed from the model (analagous to forward selection and step
wise procedures in regression). This approach has been used for identifying fire 
epochs (Reed, 1998), but there are a number of difficulties associated with it. 
An alternative approach which avoids these difficulties is to use the Bayes Infor
mation Criterion to decide on the best single (or several) models. 

From one point of view, the Bayes Information Criterion (BIC) can be viewed 
as a log likelihood, adjusted for the number of parameters in a model (here the 
number of change points and intervening hazards of burning). It can also be in
terpreted in a Bayesian context (see later discussion). 

Consider a hieararchy of models: 

HQ-. NO change points (constant hazard of burning at all times in the past). 
Hi'. One change point (separating two epochs with distinct hazards of 

burning), 
Hj. Two change points (separating three epochs with distinct hazards of 

burning), 
etc. 
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Hjj! k change points (separating fe + 1 epochs with distinct hazards of 
burning). 

Under any model Ĥ  there are 2r + 1 undetermined parameters (r change 
points separating r + 1 hazards of burning Â  or parameters qi = e~^'^) in ad
dition to the overdispersion parameter. MLEs of the change points can be found 
by comparing the quasi hkehhoods, maximized over the (r + 1)̂ ^ parameters, 
for all {^~^) possible choices of r change points. A comparison of models HQ, 
HI, ... , etc., can be achieved by comparing the BIC for each model. It can be 
shown (Reed, 2000) that an approximation for the BIC is 

B I Q - D , - ( d f ) , l o g ( ^ j (2) 

where D^ is the minimum scaled quasi deviance for model Ĥ  i.e., 

2 
^yj logyj - E l 2 ĵ log * + ^ yj] iog(i - ^0 

minimized over the choice of r change points po, pi , . . . , Pr (with po — 0 and 
p^+i = m). The terms q^ are the MLEs of the q^ parameters for epochs i = 
1, 2 , . . . , r + 1). Precisely, 

+ 1 5j 

^J-Pi^i + l ^J-1 

In Eq. (2), the term (df)^ is the residual degrees of freedom for model Ĥ  [i.e., 
df̂  = (m — 1) — (2r + 1) and n = 2] l i Sj_J. The estimate a^ is computed 
under the "biggest" model contemplated, H}^. Precisely, 

. , _ 1 f(yj-^Ojf 
m-2r-2pie^(l - 0.) 

where Oj is the MLE of dj under H,̂ . 
The model with the smallest BIC can be thought of as the one with the best 

fit, adjusting for the number of parameters. Also one can give a Bayesian inter
pretation to the BIC (see Raftery, 1995). If one associates prior probabilities 
TTi, 772, ... , TTjj to the modcls Hi, H2,... , H;,, respectively, then the posterior 
probabilities, after incorporating the data, are 

exp(—^BIC.ITT. 
P(H.|data)= - , r = l , . . . , f e 

Zi=o exp(-2BICi)7ri 

In particular for a uniform prior (i.e., all models having same credibility a pri
ori), the 7TS drop out of this expression, and then clearly the model with the 
smallest BIC is the one with the largest posterior probability. 
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In implementing this procedure, there is the problem of specifying a maxi
mum possible number of change points, k. While, in principle, one could set 
k = m — 1, corresponding to different hazard of burning in each period, there 
are difficulties with doing this. First, it would lead to a considerable computa
tional load, since under a given model H ,̂ the MLEs of the r change points are 
found by direct search. Second, there is the problem of estimating the overdis-
persion parameter cr̂ , which is estimated under the largest model contemplated. 
If k is set too large, there will be few degrees of freedom for estimating a^. In 
the following examples, a maximum of fe = 6 change points was used. In nei
ther example was the BIC minimum with either 5 or 6 change points and the 
relative values of the BICs did not change much when k was reduced from 6 to 
5, giving some comfort to the assumption that the models HQ, ... , Hg cover all 
realistic possibilities. 

Example 3. Kananaskis River Watershed 

Johnson and Larsen (1991) present results of a fire history study of the 495 km^ 
area of the Kananaskis watershed on the eastern side of the southern Rocky 
Mountains in Alberta, with a climate "transitional between plains and cordil-
leran types." Attempts by Johnson and Larsen to divide the map into spatial 
subunits with distinct fire hazard rates were unsuccessful. The time-since-fire 
distribution for the whole study area is displayed in Figure 3. There are m = 40 
age classes of width T = 10 yr. The lower panel (a logarithmic plot of cumula
tive frequency against time since fire) suggests a number of possible change 
points (e.g., at 40, 60, 130, 230 and 280 years ago). Table 3 presents the MLEs 
of change points for models HQ, ... , Hg, along with the BICs and posterior prob
abilities assuming a uniform prior on HQ, ... , Hg. The overdispersion parameter 
was estimated under Hg. 

The only plausible models appear to be H2, H3, and H4, with H3 being by far 

TABLE 3 Maximum Likelihood Estimates of Change Points in Various Models, Associated 
BICs, and Posterior Probabilities of the Various Models, Assuming a priori That All Seven 
Models Are Equally Probable (for Kananaskis Watershed time-since-fire data) 

Model 

Ho 
Hi 

H2 

H3 

H4 

H5 

tie 

MLEs of change points 

4 
4,6 
4, 6, 24 
4,6,13,23 
4, 6, 7, 13, 23 
4 ,6 ,7 , 13, 19, 27 

BIC 

-55.52 
-149.06 
-156.35 
-159.39 
-153.35 
-149.42 
-136.71 

Posterior 
probability 

0.000 
0.004 
0.171 
0.780 
0.038 
0.005 
0.000 
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TABLE 4 Maximum Likelihood Estimates and 95% LR Confidence 
Intervals for the Fire Cycle in the Four Epochs between the Three 
Estimated Change Points in Model H3 (for Kananaskis Watershed 
time-since-fire data) 

Epoch 
i 

1 
2 
3 
4 

Date 

1940-1980 
1920-1940 
1750-1920 
pre-1750 

MLE 

6409 
49 

136 
48 

Fire cycle (yr) 

95% Con. Int. 

969-715,000 
34-73 

101-189 
30-85 

the most plausible. Since the change point at 4 (1940) and 6 (1920) appear as 
MLEs for all these models, one can conclude with a very high degree of cer
tainty that there were indeed changes in fire frequency at around those times. 
Furthermore, there is very strong support of an additional change at 23 (1750). 

Of course by varying the prior probabilities of the various models, one can 
change the posteriors. However, a substantial skewness in the prior is required 
to shift the highest posterior probability from H3. Thus, one can conclude that 
the data contain strong support for the three-change-points model, with the es
timated changes occurring around 1940, 1920, and 1750. 

The MLEs of the fire cycle (inverse of the hazard rate) and 95% likelihood 
ratio confidence intervals (Reed et ah, 1998) in the four epochs separated by the 
three identified change points are displayed in Table 4. The MLEs are also shown 
as line segments superimposed on the semilog cumulative frequency plot in 
Figure 5 (top panel). As one would expect, the confidence intervals for the fire 
cycle in adjacent epochs do not overlap. The estimated hazard for the post-
1940 epoch is negligible. In fact, less than one tenth of one percent of the whole 
study area burned in the 40-yr period (1940-1980). 

Johnson and Larsen (1991) graphically identified a change point around 
1730 and estimated the pre-1730 fire cycle at about 50 years, which agrees well 
with the preceding results. However, they failed to identify the more recent 
change points identified here. 

Example 4. Glacier National Park 

Figure 4 presents data obtained by Johnson et al. (1990) from stand-origin 
maps for Glacier National Park (600 km^ of forested land) in the Rocky Moun
tains of British Columbia. The vegetation is classified as being of the Interior 
Wet Belt Forest type. The data were presented in 20-yr age classes (T = 20, 
m = 21). Table 5 gives details of MLEs, BICs, and posterior probabilities under 
a uniform prior for models HQ, Ui,... , U^. 



434 W.J. Reed 

- 1001 
8 50 

10-1 
5 1 

13 

o 

Kananaskis Watershed 

100 200 
Years since last fire 

300 400 

•g100-

S 50-
CD 
Q. 
0 

| i o -
i 5-
3 
O iJ 

• " " • " • • " - * — * ^ , 

1—1 , 1 

Glacier National Park 

N. " 

X • 1 
1 "n—' 100 200 

Years since last fire 
300 400 

FIGURE 5 Epochs of constant hazard of burning as determined by the analysis in Section IV for 
Kananskis Watershed and Glacier National Park. The points are the cumulative percentage areas 
(on logarithmic scale) with time since fire exceeding the time (in years) on the horizontal axis. The 
ranges of the line segments correspond to distinct epochs of constant hazard of burning; the slopes 
of the segments correspond to the maximimum likelihood estimates of the hazards. 

The data provide support only for models with four or more change points, 

with the model H^ standing out with a very large posterior probability. To shift 

the posterior mode from H^ requires a very substantial skewness in the prior 

distribution. Consequently the four-change-point model seems by far the most 

plausible, with estimated change points at 2, 5, 10, and 16 (i.e., around 1940, 

TABLE 5 Maximum Likelihood Estimates of Change Points in Various Models, Associated 
BICs, and Posterior Probabilities of the Various Models, Assuming a priori That All Seven 
Models Are Equally Probable (for Glacier National Park time-since-fire data) 

Model 

Ho 
Hi 

H2 

H3 

H4 

H5 

He 

MLEs of chang 

_ 
16 
12, 16 
5, 10, 16 
2,5, 10, 16 
2,5, 10, 12, 
2,5, 10, 12, 

e points 

16 
16,18 

BIG 

201.63 
74.38 
42.79 
28.08 

-9.27 
-6.98 

1.76 

Posterior 
probability 

0.000 
0.000 
0.000 
0.000 
0.797 
0.202 
0.002 
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TABLE 6 Maximum Likelihood Estimates and 95% LR Confidence Inter
vals for the Fire Cycles in the Five Epochs between the Four Estimated 
Change Points in Model H4 (for Glacier National Park time-since-fire data) 

Epoch 
i 

1 
2 
3 
4 
5 

Date 

1940-1980 
1880-1940 
1780-1880 
1660-1780 
pre-1660 

MLE 

1980 
156 

1827 
151 
25 

Fire cycle (yr) 

95% Con. Int. 

565-16700 
40-181 

673-8102 
106-224 

17-42 

1880, 1780, and 1660). There is some possibility of a fifth change point, esti
mated at 1740. MLEs and 95% Ukelihood ratio confidence intervals for the fire 
cycle (inverse of the hazard rate) in the five epochs separated by the four es
timated change points under H4 are displayed in Table 6. The MLEs are also 
shown as line segments superimposed on the semilog cumulative frequency 
plot in Figure 5 (bottom panel). 

It is worth noting that a very similar model was identified for these data us
ing backward elimination methods (Reed, 1998), the only difference being 
the change point in the 18 th century was estimated at 12 (1740) rather than 
10 (1780). 
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