CHAPTER 10

AERATION AND STRIPPING

GAS TRANSFER

The process of aeration is used for transferring oxygen to waste water. Stripping is for removing volatile gases such as hydrogen sulphide, hydrogen cyanide and ammonia from waste water. Both aeration and stripping involve a gas-liquid mass-transfer process in which the driving force is created by a departure from equilibrium. In other words, the driving force in the gas phase is a partial pressure gradient and, is a concentration gradient in the liquid phase.

The transfer of a gas can be treated as a four-step process. The first step involves passage of the gas from the vapour phase to the gas-liquid interface. The gas must then pass through a gas film on the vapour side of the interface. The third step is the passage of the gas through a liquid film on the liquid side of the interface. In the final step the gas must be dispersed throughout the bulk of the liquid. General conditions are such that one of the steps is rate-limiting and the overall gas-transfer rate can be calculated on the basis of this step. The remaining steps are insignificant in the overall process.

In stagnant conditions diffusion of the gas through the bulk solution is generally the slowest step and an expression for molecular diffusion can be used to predict the transfer rate.

The diffusion can be calculated by means of Fick's Law:
$N=-D \cdot A \cdot \frac{d c}{d y}$
where
$N=$ mass transfer per unit time
$A=$ the cross-sectional area across which diffusion occurs
$\frac{d c}{d y}=\begin{aligned} & \text { the concentration gradient perpendicular to the cross-sectio- } \\ & \text { nal }\end{aligned}$
D = diffusion coefficient

If, however, the solution is sufficiently agitated either by natural turbulence or by mechanical mixing, the rate of transfer through the gas-liquid interface becomes the controlling factor. For sparingly soluble gases such as oxygen and carbon dioxide, the resistance of the liquid film controls the rate of gas transfer, while for highly soluble gases such as ammonia, the transfer rate is controlled by the resistance of the gas phase.

Gas solubility

The equilibrium concentration of a gas in contact with a liquid can be calculated by Henry's Law:
$\mathrm{C}_{\mathrm{eq}}=\frac{\mathbf{1}}{\mathrm{H}} \cdot \mathrm{p}$
where
$c_{\text {eq }}=$ the equilibrium concentration of the gas in solution
H $=$ Henry's Constant
$p=$ the partial pressure of the gas in the gas phase

Table 10.1 gives the equilibrium concentration of oxygen in contact with distilled water in the temperature range of $0-30^{\circ} \mathrm{C}$.

Table 10.2 gives Henry's constant as a function of temperature for several important gases. Henry's Constant is roughly proportional to the temperature; i.e. with increased temperature the solubility of a gas decreases. At $10^{\circ} \mathrm{C}$ the amount of oxygen dissolved in distilled water is approximately $11.3 \mathrm{mg} / 1$, whereas at $30^{\circ} \mathrm{C}$ the maximum solubility is about $7.44 \mathrm{mg} / 1$. As can be seen the solubility changes significantly with the temperature.

Henry's Constant is also influenced by the presence of dissolved solids. The combined effects of dissolved solids and temperature on the solubility of oxygen in water is expressed by the following equation (Gameson and Robertson, 1955):
$C_{e q}=\frac{475-2.65 \cdot C_{d s}}{33.5+(T-273)}$
where
$C_{d s}=$ the concentration of total dissolved solids expressed in g / I
$T=$ the absolute temperature expressed on ${ }^{\circ} K$

TABLE 10.1.
Dissolved oxygen saturation values in distilled water

Tempera-$\text { ture }\left({ }^{\circ} \mathrm{C}\right)$	Dissolved oxygen (mg/1)									
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	14.65	14.61	14.57	14.53	14.49	14.45	14.41	14.37	14.33	14.29
1	14.25	14.21	14.17	14.13	14.09	14.05	14.02	13.98	13.94	13.90
2	13.86	13.82	13.79	13.75	13.71	13.68	13.64	13.60	13.58	13.53
3	13.49	13.46	13.42	13.38	13.35	13.31	13.28	13.24	13.20	13.17
4	13.13	13.10	13.06	13.03	13.00	12.96	12.93	12.89	12.86	12.82
5	12.79	12.76	12.72	12.69	12.66	12.62	12.59	12.56	12.53	12.49
6	12.46	12.43	12.40	12.36	12.33	12.30	12.27	12.24	12.21	12.18
7	12.14	12.11	12.08	12.05	12.02	11.99	11.96	11.93	11.90	11.87
8	11.84	11.81	11.78	11.75	11.72	11.70	11.67	11.64	11.61	11.58
9	11.55	11.52	11.49	11.47	11.44	11.41	11.38	11.36	11.33	11.30
10	11.27	11.24	11.22	11.19	11.16	11.14	11.11	11.08	11.06	11.03
11	11.00	10.98	10.95	11.93	10.90	10.87	10.85	10.82	10.80	10.77
12	10.75	10.72	10.70	10.67	10.65	10.62	10.60	10.57	10.55	10.52
13	10.50	10.48	10.45	10.43	10.40	10.38	10.36	10.33	10.31	10.33
14	10.26	10.24	10.22	10.19	10.17	10.15	10.12	10.10	10.08	10.06
15	10.03	10.01	9.99	9.97	9.96	9.92	9.90	9.88	9.86	9.84
16	9.82	9.79	9.77	9.75	9.73	9.71	9.69	9.67	9.65	9.63
17	9.61	9.58	9.56	9.54	9.52	9.50	9.48	9.46	9.44	9.42
18	9.40	9.38	9.36	9.34	9.32	9.30	9.29	9.27	9.25	9.23
19	9.21	9.19	9.17	9.15	9.13	9.12	9.10	9.08	9.06	9.04
20	9.02	9.00	8.98	8.97	8.95	8.93	8.91	8.90	8.88	8.86
21	8.84	8.82	8.81	8.79	8.77	8.75	8.74	8.72	8.70	8.68
22	8.67	8.65	8.63	8.62	8.60	8.58	8.56	8.55	8.53	8.52
23	8.50	8.48	8.46	8.45	8.43	8.42	8.40	8.38	8.37	8.36
24	8.33	8.32	8.30	8.29	8.27	8.25	8.24	8.22	8.21	8.19
25	8.18	8.16	8.14	8.13	8.11	8.10	8.08	8.07	8.06	8.04
26	8.02	8.01	7.99	7.98	7.96	7.95	7.93	7.92	7.90	7.89
27	7.87	7.86	7.84	7.83	7.81	7.80	7.78	7.77	7.75	7.74
28	7.72	7.71	7.69	7.68	7.66	7.65	7.64	7.62	7.61	7.59
29	7.58	7.56	7.55	$7 \cdot 54$	7.52	7.51	7.49	7.48	7.47	7.45
30	7.44	7.42	7.41	7.40	7.38	$7 \cdot 37$	7.35	$7 \cdot 34$	7.32	7.31

It must be emphasized that this equation is developed under the conditions that the pressure is 760 mm of mercury and that clean water is in contact with wet air. The solubility of oxygen in waste water is less than in pure water. Roughly, the solubility in municipal waste water is about 95% that in pure water; the solubility of oxygen in various types of industrial waste water may be even less.

TABLE 10.2
Henry's Constant $\left(x 10^{-3}\right)\left(\right.$ Atm $\left.^{-1}\right)$

Gas	Temperature (${ }^{\circ} \mathrm{C}$)						
	0	5	10	15	20	25	30
Acetylene	0.72	0.84	0.96	1.08	1.21	1.33	1.46
Air (atm)	0.43	0.49	0.55	0.61	0.66	0.72	0.77
Carbon dioxide.	0.73	0.88	1.04	1.22	1.42	1.64	1.86
Carbon monoxide	0.35	0.40	0.44	0.49	0.54	0.58	0.62
Hydrogen	0.58	0.61	0.64	0.66	0.68	0.70	0.73
Ethane	0.13	0. 16	0.19	0.23	0.26	0.30	0.34
Hydrogen sulphide	26.80	31.50	36.70	42.30	48.30	54.50	60.90
Methane	0.22	0.26	0.30	0.34	0.38	0.41	0.45
Nitrous oxide	0.17	0.19	0.22	0.24	0.26	0.29	0.30
Nitrogen	0.53	0.60	0.67	0.74	0.80	0.87	0.92
Nitric oxide	-	1.17	1.41	1.66	1.98	2.25	2.59
Oxygen	0.25	0.29	0.33	0. 36	0.40	0.44	0.48

In aeration tanks the gas is generally introduced into the water at a depth of $3-5 \mathrm{~m}$ below the surface. In this case the gas solubility in the tank is influenced by the fact that the partial pressure of the gas in the bubbles decreases as they rise to the surface of the solution. It is therefore necessary to use a mean saturation value ($c_{s m}$) for the oxygen introduced at the bottom of an aeration tank (Oldshue, 1956):
$c_{s m}=c_{e q}\left(\frac{\mathrm{P}}{2}+\frac{\mathrm{o}_{\mathrm{ta}}}{42}\right)$
where
$p=$ absolute pressure in atm
$O_{t a}=$ percent concentration of oxygen in the air leaving the aeration tank

In this context it must be underlined that Henry's Law is an ideal law and gives only approximate values. It is preferable to use solubility data if these are available.

Mass transfer

Lewis and Whitman (1924) developed equations for the transfer rate controlled by the gas-film resistance as well as for the transfer rate controlled by the liquid-film resistance:
$N=K_{L} \cdot A\left(C_{e q}-C\right)=K_{G} \cdot A\left(p-p_{e q}\right)$
where
$\mathrm{N}=$ mass transfer per unit time
A = area of cross-section
$c_{e q}=$ concentration at equilibrium (saturation)
p = partial pressure in the gas phase
$p_{e q}=$ partial pressure at the interface
$K_{L}=$ liquid-film defined as D_{L} / Y_{L}
$K_{G}=$ gas-film defined as D_{G} / Y_{G}
$D_{L}=$ diffusion coefficient in the liquid
$D_{G}=$ diffusion coefficient in the gas
See also Fig. 10.1.

Fig. 10.1. Schematic representation of interfacial mass transfer.

The liquid-film-controlled process can be expressed in concentration units by dividing by the volume, V :
$\frac{1}{\hat{V}} N=\frac{d c}{d t}=K_{L} \cdot \frac{A}{V}\left(C_{e q}-C\right)$
$K_{L, a}=K_{L} \cdot \frac{A}{V}$ is termed the overall film coefficient.

The transfer coefficient, K_{L}, is affected by a number of variables. In general, the liquid-film coefficient increases with increasing temperature according to
$K_{L}(t)=K_{L, 20^{\circ}} \cdot 1.028^{t-20}$
$t=$ temperature (c^{o})
For $K_{L, a}$ in a bubble aeration system, the equation becomes $K_{L, a}(t)=K_{L, a, 20^{\circ} C} \cdot 1.02^{t-20}$

The presence of surface-active agents in the waste water has a significant effect on K_{L} and $\frac{A}{V}$. A decrease in surface tension will decrease the size of the bubbles generated, which will increase $\frac{A}{V}$. In some instances the increase in $\frac{A}{V}$ will exceed the decrease in K_{L}, with the overall effect that the transfer rate increases. Generally, $K_{L, a}$ decreases with increasing concentration of impurities in water. Fig. 10.2 shows a characteristic change in the coefficient α, as a function of BOD_{5} of water.

Fig. 10.2. A typical $\mathrm{BOD}_{5} / \alpha$ relationship.

The coefficient, α, is defined as the ratio of K_{L}, a for waste water to that for distilled water.

Generally K_{L}, a varies with the depth (H) of the bubble diffusion system according to the equation:
$\frac{\left(K_{L, a}\right)_{1}}{\left(\mathrm{~K}_{\mathrm{L}, \mathrm{a}}\right)_{2}}=\left(\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}\right)^{\mathrm{n}}$
The exponential, n, has a value close to 0.7 for most systems.
The overall transfer coefficient will increase with the degree of turbulent mixing.

In natural streams $\frac{A}{V}$ is equal to $\frac{1}{H}$, where H is the depth of the stream. O'Connor (1958) has found the following relationship:
$K_{L}=\left(\frac{D_{L} \cdot U}{H}\right)^{1 / 2}$
where $u=$ the average velocity of the stream.

Fig. 10.3. Correlation of bubble-aeration data.

Fig. 10.3 shows the correlation of bubble aeration. v_{B} is the velocity of the bubbles. From this correlation it is possible to find K_{L} (Eckenfelder, 1959).

The diameter, d_{B}, of the bubbles can be expressed in terms of G^{n}, where G is the gas flow. This will lead to the following equation, when a mathematical expression for Fig. 10.3 is used:
$K_{L, a}=\frac{\mathrm{K}^{1} \cdot \mathrm{H}^{2 / 3} \cdot \mathrm{G}^{(1-\mathrm{n})}}{\mathrm{V}}$
where K^{1} is a constant.
For a wide range of commercial diffusion devices the value (1 - n) has been found to vary between 0.8 and 1.0 . It is less than unity for small, orificed diffusion units. As shown, the value of the depth exponential is 0.67 . However, it has been found to be 0.71 0.77 for plate diffusers (King, 1955), 0.78 for a four-nozzle sparger placed in the centre line of a cylindrical tank (Eckenfelder, 1959), 0.45 for diffusion tubes along the side wall of a wide ring in a regular tank and 0.65 for impingement-type units (Dreier, 1956).

The aeration equipment commonly used is air diffusion units, turbine aeration equipment or surface aeration units.

The diffused-aeration equipment can either be units producing small bubles from a porous medium (tubes or plates constructed of porcelain or carborundum tightly wrapped in, for example, nylon or polyether sponge), or units using a large orifice to produce the air bubbles. The performance of all air diffusion units can be calculated using the following equation:
$K_{L, a}=\frac{K^{1} \cdot G^{n} \cdot H^{m}\left(C_{e q}-C\right) \cdot 1 \cdot 02^{(t-20)} \cdot \alpha \cdot \beta}{W^{p} \cdot V}$
where $K_{L, a}, K^{1}, V, G, H, t, C e q, C$ and α have been defined previously, $W=$ the width of the aeration tank, n, m and $p=\operatorname{exponen}-$ tials characteristic of the aeration device, and $\beta=$ a correction coefficient with a value close to 1.0 .

The turbine aeration system disperses compressed air by the pumping action of a rotating propeller (see Fig. 10.4). The unit can be defined by the relationship:
$\frac{K_{L, a}}{V}=K^{1} \cdot I^{x} \cdot G^{n} \cdot D^{y} \cdot\left(C_{e q}-C\right) \cdot 1 \cdot 02^{(t-20)}$
where
$I=$ the propeller speed (m/s)
$D=$ the propeller diameter
x and $y=$ characteristic exponentials

Fig. 10.4. Turbine aerator

Surface aeration units are of two types. One type employs a draft tube, the other a surface propeller, but in both types the gas transfers occurs by the surface exposure of a large volume of liquid (see Fig. 10.5).

Fig. 10.5. Surface impeller.

Often it is possible to use the following equation for this equipment:
$\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{\mathrm{O}} \frac{\mathrm{C}_{\mathrm{eq}}-\mathrm{C}}{\mathrm{C}_{\mathrm{eq}, 20}} \cdot 1.028^{\mathrm{t}-20} \cdot \alpha$
where
$N_{t}=k g O_{2} / h p-h$ at $t^{\circ} \mathrm{C}$ and $\mathrm{N}_{\mathrm{O}}=\mathrm{kg} \mathrm{o}_{2} / \mathrm{hp-h}$ at $20^{\circ} \mathrm{C}$ zero dissolved oxygen. The other symbols are defined above. N_{0} is characteristic of the aeration unit and the speed (rpm). N_{0} is in the order of $2 \mathrm{~kg} / \mathrm{hp}-\mathrm{h}$ for most applied units and decreases as the volume of liquid increases.

Although several equations have been developed to estimate the gas-transfer efficiency of aeration devices, it seems necessary in most cases actually to measure the oxygen-transfer efficiency. This measurement involves the chemical removal of dissolved oxygen by the addition of sodium sulphite, using cobalt as a catalyst. The oxygen concentration is then measured during aeration under specified conditions and the overall transfer coefficient can be calculated on the basis of equation (10.6).

Design of an absorption or stripping tower
Fig. 10.6 shows the principle of a countercurrent tower. The tower may be either a packed or a spray tower filled with bubblecap trays, or of any internal construction to bring about a good gas-liquid contact.

The following relationships are valid:
$Y=\frac{(y)}{1-y}=\frac{p}{P_{t}-p}$
and
$G_{S}=G(1-y)=\frac{G}{1+Y}$
where
$G=$ gas stream total moles $/ h / m^{2}$
$y=$ mole fraction of diffusing solute
$\mathrm{p}=$ partial pressure
$Y=$ mole ratio of diffusing solute
$G_{s}=\operatorname{moles} / h / m^{2}$ of nondiffusing, essentially insoluble gas
$P_{t}=$ total pressure

Fig. 10.6. Principles of countercurrent tower.

Similarly, the following equation is valid for the liquid stream:
$X=\frac{x}{1-x}$
$L_{s}=L(1-x)=\frac{L}{1+X}$
where
$L=1 i q u i d$ stream moles $/ \mathrm{h} / \mathrm{m}^{2}$
$x=$ mole fraction of soluble gas
$X=$ mole ratio of soluble gas
$L_{s}=\operatorname{moles} / h^{2} / \mathrm{m}^{2}$ of nonmvolatile solvent

Since the solvent gas and solvent liquid are essentially unchanged in quantity as they pass through the tower, it is convenient to express the material balance in terms of these.

The balance in the lower part of the tower (see Fig. 10.6) can be expressed by
$G_{S}\left(Y_{1}-Y\right)=L_{s}\left(X_{1}-X\right)$

This is the equation of a straight line, the so-called operating line, which has a slope of $\frac{\mathrm{L}_{S}}{\mathrm{G}_{S}}$ and passes through $\left(X_{1}, Y_{1}\right)$. The operating line also passes through the point $\left(X_{2} . Y_{2}\right)$.

In Fig. 10. 7 the operating line is plotted together with the equilibrium solubility curve, plotted in terms of the mole ratio.

Fig. 10.7. Equilibrium curve (1) and operating line (2) for a stripping process.

For an absorption tower the operating line always lies above the equilibrium solubility curve while, for a stripping tower, the operating line is always below the equilibrium solubility curve (see Fig. 10.7).

If we consider a packed or spray tower of unit area cross-section, it is convenient to describe the interfacial surface between the gas and liquid as a function of the dispersion of the liquid in the thin film over the packing. The following equation is valid:
$\mathrm{dS}=\mathrm{adz}$
where
$S=$ area of the interfacial expressed as m^{2} / m^{2} tower cross-section $a=m^{2}$ interfacial surface $/ \mathrm{m}^{3}$ packed volume
$Z=$ the height, (m), of the tower

The amount of solid in the gas passing the differential section of the tower is G. y mole $/ \mathrm{h} / \mathrm{m}^{2}$, and the rate of mass transfer to the liquid, $d(G \cdot y)$. This can be related to the mass transfer coefficient as follows (compare with equation 10.5):
$d(G \cdot y)=K_{y} \cdot a\left(y-y_{e q}\right) d z$
where $K_{y}=$ the overall transfer coefficient (see also equation 10. 31).
Both G and Y vary from one part of the tower to another, but G_{s} does not. Therefore it is more convenient to use G_{s} in these expressions:
$d(G \cdot y)=G_{S} \cdot d\left(\frac{y}{1-y}\right)=G_{s} \frac{d y}{(1-y)^{2}}=\frac{G d y}{1-y}$

The mass-transfer coefficient for diffusion of one component through a second (the solvent) includes a term involving the average concentration, Y_{m}, of the non-diffusing gas along the path of the diffusion. If the concentration of solute varies considerably from one end of the tower to another, the quantity $K_{G} \cdot a(1-y)_{m}$ will be much more constant than K_{G} - a alone. Therefore equation (10.21) will be transformed to
$d(G \cdot y)=\frac{G d y}{1-y}=\frac{\left(K_{G} a(1-y)_{m}\right)\left(y-y_{e q}\right) d z}{(1-y)_{m}}$
or
$\frac{(1-y)_{m}}{(1-y)} \cdot \frac{d y}{y-y_{e q}}=\frac{K_{G} \cdot a(1-y)_{m} \cdot d z}{G}$
Equation (10.24) may be integrated to obtain, Z , in terms of $\mathrm{K}_{\mathrm{G}} \cdot \mathrm{a}$, but for many situations the first term on the left-hand side is very close to unity. Since the number of transferred units $N_{\text {tog }}$ is defined as
$N_{t o g}=\int_{y_{2}}^{y_{1}(1-y)_{m} \cdot d y} \frac{(1-y)\left(y-y_{e q}\right)}{(1-y}$
then
$\mathrm{Z}=\mathrm{N}_{\mathrm{tog}} \cdot \mathrm{H}_{\mathrm{tog}}$
$N_{\text {tog }}$ can as shown be related to the height of the packing and the height per transfer unit, termed $H_{\text {tog. }}$. The height per transfer unit is an experimental quantity, but it is more convenient to use it than K_{G}. a and other mass-transfer coefficients in the design of towers. H $H_{\text {tog }}$ has the dimension of length. The subscript, og, is used, as seen in the terms $N_{\text {tog }}$ and $H_{\text {tog }}$ to indicate that these terms are based on an overall driving force $y-y$ eq within the gas phase. These terms therefore represent the vertical distance between the operating line and equilibrium curve at any liquid concentration on a graph plotted in mole fractions.

The quantity $(1-y)_{m}$ is the average concentration of non-diffusing gas at either end of the diffusion path. (1-y) is the concentration of the main body of the gas and ($1-y_{\mathrm{eq}}$) that at the liquid gas interface.
$(1-y)_{m}=\frac{\left(1-y_{e q}\right)-(1-y)}{\ln \frac{\left(1-y_{e q}\right)}{(1-y)}} \cong \frac{\left(1-y_{e q}\right)+(1-y)}{2}$

For all ordinary purposes the arithmetic mean is entirely satisfactory, and equation (10.25) is changed to:
$N_{\text {tog }}=\int_{y_{2}}^{y_{1}} \frac{d y}{y_{e q}-y_{e q}}+\frac{1}{2} \ln \frac{1-y_{2}}{1-y_{1}}$

The calculation of the number of transfer units for dilute mixtures can be simplified. When the gas mixture is dilute, the second term of equation (10.27) becomes negligible and the equation may be simplified as follows:
$N_{\text {tog }}=\int_{y_{2}}^{y_{1}} \frac{d y}{y-y_{\text {eq }}}$

If the equilibrium curve and the operating line in terms of mole fraction are considered as straight lines, it is possible to rewrite equation (10.29) as:
$N_{\text {tog }}=\frac{y_{1}-y_{2}}{\left(y-y_{e q}\right)_{m}}$

Equation (10.30) demonstrates that one overall gas-transfer unit is obtained when the change in gas composition equals the average of the overall driving force causing the change. Let us consider the diagram shown in Fig. 10.8. The line (3) is vertically halfway between the operating line (2) and the equilibrium curve (1). The step CFD, which corresponds to one transfer unit, has been constructed by drawing the horizontal line CEF, so that CE is equal to EF, and continuing vertically to D.

Fig. 10.8. Graphical determination of transfer units (absorption).
$y_{G}-y_{H}$ may be considered as the average driving force for the exchange in gas composition $y_{0}-y_{F}$ corresponding to this step. As GE is equal to $E H$ and if the operating line is straight $D F=2 \cdot G E=G H$, and the step CFD corresponds to one transfer unit. In a similar way the other transfer units were stepped off.

The resistance to mass transfer in absorption and stripping processes in the case both the gas film and liquid film are controlling factors can be calculated on the basis of the following equation:
$\frac{1}{K_{Y} \cdot a}=\frac{1}{K_{G} \cdot a}+\frac{m}{K_{L} \cdot a}$
where $m=$ the slope of the equilibrium solubility curve (mole fraction in the gas/mole fraction in the liquid).

By comparison of equation (10.23) with (10.26) $\mathrm{H}_{\mathrm{tog}}$ can be expresses by the contribution of individual phase resistances, $H_{t G}$ and H_{tL} :
$H_{t O g}=H_{t G}+\frac{m G}{L} H_{t L} \frac{(1-x)_{m}}{(1-y)_{m}}$

For diluted solutions, the ratio of concentrations of nondiffusing substances will be nearly unity, and:
$H_{t o g}=H_{t G}+\frac{m G}{L} H_{t L}$

As mentioned previously, absorption or stripping of very insoluble gases such as oxygen, hydrogen or carbon dioxide, is controlled by resistance to mass transfer in the liquid, for which $H_{t L}$ is a direct measure. $H_{t L}$ can be found for common packing from the empirical expression:
$H_{t L}=\emptyset\left(\frac{L}{0.31 \cdot \mu_{L}}\right)^{\eta} \mathrm{Sc}_{\mathrm{L}}^{0.5}$
where \emptyset and η can be found from Table 10.3 for different packings.
$\mathrm{L}=$ the flowrate $\mathrm{kg} / \mathrm{h} / \mathrm{m}^{2}$
$\mathrm{Sc}_{\mathrm{L}}=$ the dimensionless Schmidt number $=\mu_{L} / \rho_{L} \cdot D_{L}$
$\mu_{L}=$ the viscosity ($\mathrm{kg} / \mathrm{m} / \mathrm{h}$)
$\rho_{L}=$ specific gravity
$\mathrm{D}_{\mathrm{L}}=$ diffusion coefficient

In some instances $H_{t o g} \approx H_{t G}$. This almost obtains for the stripping of ammonia from water into air, but in this case the liquidfoam resistance is still not completely negligible despite the fact that ammonia is very soluble in water.

It is possible to calculate $H_{t G}$ from empirical data:
$H_{t G}=\frac{\alpha \cdot{ }_{G}^{\beta}}{L^{\gamma}} \cdot \mathrm{Sc}_{\mathrm{G}}^{0.5}$
where α, β and $\gamma=$ empirical constants, $S c_{G}=$ the dimensionless Schmidt number, $\quad \mathrm{Sc}_{\mathrm{G}}=\mu_{\mathrm{G}} / \rho_{\mathrm{G}_{2}} \cdot \mathrm{D}_{\mathrm{G}}$, and G and $L=$ the gas and liquid flowrates measured in $\mathrm{kg} / \mathrm{h} / \mathrm{m}^{2}$.

TABLE 10.3
Liquid-film height of transfer unit
$\mathrm{H}_{\mathrm{tL}} \cdot \emptyset\left(\frac{\mathrm{L}}{\mu_{\mathrm{L}}}\right)^{\eta} \mathrm{Sc}_{\mathrm{L}}^{0} .5$
$H_{t L}=m, L=k g / h / m^{2}, \mu_{L}=k g / m / h, S c_{L}=d i m e n s i o n l e s s(S c h m i d t$ number)

Packing	\emptyset	η	Range of L
Rashig rings:			
$3 / 8$ in.	$3.15 \cdot 10^{-4}$	0.46	
$1 / 2$ in.	$7.05 \cdot 10^{-4}$	0.35	
1 in.	$2.30 \cdot 10^{-3}$	0.22	1,800-68,000
1.5 in.	$2.56 \cdot 10^{-3}$	0.22	
2 in.	$2.88 \cdot 10^{-3}$	0.22	
Berl saddles: ${ }^{-3}$			
1/2 in.	$1.43 \cdot 10^{-3}$	0.28	
1 in.	$1.26 \cdot 10^{-3}$	0. 28	
1.5 in.	$1.34 \cdot 10^{-3}$	0.28	
3-in. partition rings (stacked staggered)	0.0168	0.09	13,000-63,000

Spiral rings (stacked staggered):
$\begin{array}{lllll}\text { 3-in. single spiral } & 1.95 \cdot 10^{-3} & 0.28 & 1,800-68,000\end{array}$
$\begin{array}{lllll}\text { 3-in. triple spiral } & 2.49 \cdot 10^{-3} & 0.28 & 13,000-63,000\end{array}$
Drip-point grids
(continuous flue):

No. 6146	$3.51 \cdot 10^{-3}$	0.23	$15,000-135,000$
No. 6295	$1.50 \cdot 10^{-3}$	0.31	$11,000-100,000$

From the data of Sherwood et al., and Molstad et al.

Values of the empirical constants are listed in Table 10.4.
The diameter of the tower is calculated on the basis of the minimum liquid rate for wetting and on the so-called flooding point. The minimum liquid rate for wetting \mathbf{l}_{w}, can be calculated from the following equation:

$$
\begin{equation*}
I_{w}=\frac{L}{\rho_{L} \cdot a} \tag{10.36}
\end{equation*}
$$

where
$\rho_{L}=$ the density of the liquid $\mathrm{kg} / \mathrm{m}^{3}$
$a^{L}=$ surface area of the packing $\mathrm{m}^{2} / \mathrm{m}^{3}$

TABLE 10.4
Gas-film height of transfer unit
$H_{t G}=\frac{\alpha G^{\beta}}{L^{\gamma}} \operatorname{Sc}_{G}^{0.5}$.
$H_{t G}=\mathrm{m}, \mathrm{G}=\mathrm{kg} / \mathrm{h} / \mathrm{m}^{2}, \mathrm{~L}=\mathrm{kg} / \mathrm{h} / \mathrm{m}^{2}, \mathrm{Sc} \mathrm{G}_{\mathrm{G}}=$ dimensionless(Schmidt number)

Packing	α	β	γ	Range of				
				G	L			
Rashig rings:								
3/8 in.	2.39	0.45	0.47	900-2,300	2,300-6,800			
1 in.	9.31	0.39	0.58	900-3.600	1,800-2,300			
	8.53	0.32	0.51	900-2,700	2,300-20,000			
1.5 in.	26.4	0.38	0.66	900-3,200	2,300-6,800			
	2,66	0.38	0.40	900-3,200	6,800-20,000			
2 in.	4.06	0.41	0.45	900-3,600	2,300-20,000			
Berl saddles:								
1/2 in.	62,8	0.30	0.74	900-3,200	2,300-6,800			
	0.741	0.30	0.24	900-3,200	6,800-20.000			
1 in.	2,09	0.36	0.40	900-3,600	1,800-20.000			
1.5 in.	6.14	0.32	0.45	900-4,500	1,800-20.000			
3-in.partition rings (stacked staggered)	1338	0.58	1.06	700-4.100	13,000-20.000			
Spiral rings (stacked staggered):								
$\begin{array}{r} 3-i n \cdot s i n g l e \\ \text { spiral } \end{array}$	2.17	0.35	0.29	600-3,200	13,000-45,000			
$\begin{array}{r} 3-i n \cdot t r i p l e \\ \text { spiral } \end{array}$	21.7	0.38	0.60	900-4,500	2,300-13,000			
Drip-point (continuous flue):								
No. 6146	4.02	0.37	0.39	600-4,500	13,000-30,000			
No. 6295	5.40	0.17	0.27	450-4,500	9,000-52,000			

From the data of Fellinger and Pigford (1952) and Molstad et al. (1943

The flooding point has been defined as the gas velocity at which a liquid layer forms on top of the packing. Based on experimental data, the following equation can be used for the determination of 1_{w} at the flooding point:
$\frac{1_{W}}{d_{h}^{2 / 3}}\left(1000 \mu_{L}\right)^{0.1}=f\left(\frac{L}{G} \sqrt{\frac{\rho_{G}}{\rho_{L}}}\right)$
where $d_{h}=$ the hydraulic diameter of the packing and $\mu_{L}=$ the viscosity, but in $\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}$. The function is shown in Fig. 10.9.

Fig. 10.9. Plot for determination of flooding point.
(1) Grids. (2) Stacked rings. (3) Random packings of rings.

TABLE 10.5
Characteristic packing data

Packing	Dimensions(inch)			Number$\text { per } m^{3}$	$\begin{aligned} & \text { Surface } \\ & \left(\mathrm{m}^{2} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & \text { Poro- } \\ & \text { sity } \\ & (\epsilon) \end{aligned}$	$d_{h}=h y d r a u$ lic diam. (m)	$10^{3} \mathrm{~d}_{\mathrm{y}} \frac{3}{2}$	$\begin{aligned} & \text { Gas flow } \\ & \text { entry tower } \\ & (\mathrm{m} / \mathrm{s}) \end{aligned}$
	Diam.	Height	Thickness						
Coke	-	3	-	-	49	0.50	0.041	8.3	0.54-0.96
"	-	1-2	-	-	115	0.40	0.014	1.7	0.26
"	-	1	-	-	131	0.45	0.014	1.7	0.15-0.26
Broken stone	-	2	-	-	62.5	0.46	0.029	4.9	0.51-0.60
" "	-	1/2-1 1/4	-	-	144	0.40	0.011	1.15	0.13
Grids:									
Wood	1	1	1/4	-	98.5	0.75	0.019	2.65	1.5-2.4
"	2	2	$1 / 4$	-	88.5	0.75	0.019	2.65	1.7-2.5
Jagged grids:									
Wood	4	4	1/2	-	19.5	0.89	0.089	26.5	2.4-3.6
"	2	2	3/8	-	42.5	0.83	0.041	8.4	$2.1-3.3$
"	$11 / 2$	$1 \mathrm{l} / 2$	3/16	-	54.0	0.89	0.033	6.1	2.1-3.0
Stacked									
Stoneware	4	4	3/8	950	62.5	0.73	0.047	10.3	1.6-2.4
"	3	3	3/8	2300	82	0.66	0.032	5.7	1.1-1.5
"	3	3	$1 / 4$	2300	82	0.76	0.037	7.1	1.7
"	2	2	$1 / 4$	7400	118	0.67	0.023	3.5	0.86
"	2	2	3/16	7400	118	0.72	0.024	3.7	0.89
Metal	2	2	1/16	6180	98.5	0.92	0.037	7.1	0.72-0.90
"	1	1	1/16	47600	194	0.86	0.018	2.4	0.57-0.69
*	1/2	$1 / 2$	1/32	370000	377	0.87	0.009	0.85	0.3
Random									
$\begin{aligned} & \text { packings of } \\ & \text { Rashig rings: } \end{aligned}$									
Stoneware	3	3	3/8	1840	65.5	0.72	0.044	9.2	0.67-1.2
${ }^{\prime}$	2	2	$1 / 4$	5820	92	0.74	0.032	5.7	0.54-0.86
"	2	2	3/16	6000	95	0.79	0.033	6.0	0.63-0.93
"	$11 / 2$	$11 / 2$	3/16	14100	125	0.73	0.023	3.5	0.51-0.81
"	1	1	3/32	46000	184	0.80	0.017	2.2	0.42-0.60
"	3/4	3/4	3/32	106000	236	0.74	0.013	1.5	-
"	$1 / 2$	$1 / 2$	1/16	370000	377	0.73	0.008	0.72	0.19
Ber1-saddles:									
Stoneware	1/2	-	-	528000	460	0.65	0.0057	0.43	
"	1.	-	-	81000	258	0.69	0.0107	1.10	not
"	$11 / 2$	-	-	22900	165	0.72	0.017	2.21	indicated
"	2	-	-	8000	120	0.72	0.024	3.72	

Partly after G.A, Morris and J. Jackson: Absorption Towers, 1953.

The flooding point represents the upper limit for the operation of the tower. Operating conditions of the tower can be improved by increasing the gas flow. Usually a gas flow of $50-60 \%$ of the flow corresponding to the flooding point is used. The diameter of the tower is found by the following procedure:

1. Based on L, G the specific gravity of the liquid and the gas, μ_{L} and Fig. 10.9 is found $\frac{1_{w}}{d_{h^{2 / 3}}} \cdot 10^{3} \cdot d_{h}$ is shown in Table 10.5 for different packing materials.
2. 1_{W} and d_{h} must be chosen so, that l_{W} is greater than $0.08 \mathrm{~m}^{3} / \mathrm{m} / \mathrm{h}$ for common packing including rashig rings less than 7.5 cm and greater than $0.12 \mathrm{~m}^{3} / \mathrm{h}$ for rashig rings larger than 3 in.
3. Generally, $0.4 \mathrm{~m}^{3} / \mathrm{m} / \mathrm{h}$ can be considered as the upper limit for $a 11$ types of packing.
4. Based on equation (10.36) and the total flows (kg/m ${ }^{2}$) it is possible to find the area of cross-section of the absorption stripping tower.

Application of aeration
Air is introduced into waste water for a variety of reasons. The possibility of removing dissolved inorganic substances such as divalent iron or manganese by oxidation has already been mentioned. Preaeration is sometimes used in cases where raw waste water lacks dissolved oxygen. Furthermore, diffused compressed air is used in aerated flotation chambers and, finally, air is used in biological treatment of waste water to meet the metabolic oxygen requirements of the treatment organisms and to provide mixing within the reaction vessel. Oxygen is a very important factor in all aerobic biological oxidation processes and therefore deserves primarily consideration in process design operations. In the presence of high concentrations of organic compounds aerobic biological oxidation may even be limited by the rate at which ozygen is transferred to the system by natural or artificial aeration.

Application of stripping

The stripping process is used to remove volatile gases such as hydrogen sulphide, hydrogen cyanide and ammonia. The removal of ammonia by stripping is used in the treatment of municipal waste water, but it has also been suggested for the treatment of industrial waste water or for the regeneration of the liquid used for elution of ion exchangers (Jorgensen, 1976). The rate at which carbon dioxide, hydrogen sulphide, ammonia and hydrogen cyanide can be removed by air stripping is highly dependent on pH , since all four of these volatile gases are acids or bases. This is illustrated for the removal of hydrogen sulphide from water at various pH values in Fig. 10.10.

Also some organic solvents such as acetone and methylethylketone can be removed from waste water by stripping.

Fig. 10.10. Sulphide remaining versus time at $\mathrm{pH} 3.0,7.0$ and 9.0 .

Example 10.1

The design data for an aeration plant are required.
The plant must treat $0.5 \mathrm{~m}^{3}$ of water per minute and provide an oxygen concentration of between 8.5 and $9.0 \mathrm{mg} / 1$, i.e. between 84.9 and 89.9% saturation at ambient temperature ($16^{\circ} \mathrm{C}$).

An aerator supplying $15 \mathrm{~m}^{3} / \mathrm{h}$ is available and the area of the contact is $1.2 \cdot 1.2 \mathrm{~m}^{2}$.

Solution

Based on Henry's Law:
$\mathrm{p}=\mathrm{H} \cdot \mathrm{X}$
we find that $X=5.66 \cdot 10^{-6}$ since $p=0.21$ atm.
This gives an oxygen concentration of
$5.66 \cdot 10^{-6} \cdot 32 \cdot 55.5 \cdot 10^{3}=10.1 \mathrm{mg} / 1$.
Based on equation (10.34) H_{tL} can be found :
$\mu_{L}=\frac{0.01 \mathrm{~g}_{\mathrm{g}}}{\mathrm{cm} \cdot \mathrm{sec}}=\frac{0.01 \cdot 10^{-3} \mathrm{~kg} \cdot 3600 \cdot 100}{\mathrm{~m} \cdot \mathrm{~h}}=3.6 \mathrm{~kg} / \mathrm{m} / \mathrm{h}$
$\mathrm{Sc}=\frac{\mu_{\mathrm{L}}}{\rho_{\mathrm{L}} \cdot \mathrm{D}_{\mathrm{L}}}=558$ for water

If we choose a packing of 0.024 m size, $\varnothing=2.3 \cdot 10^{-3}$ and $\eta=0.22$, we find $H_{t L}=0.37 \mathrm{~m}$.

Based on a diagram giving the equilibrium data (use Henry's Law or Table) and the operating line, it is possible to see that one transfer unit is sufficient. This means, that the height of the aeration vessel should be a minimum of 0.37 m .

REFERENCES

Dreier, D.E., 1956. Biological Treatment of Sewage and Industrial Wastes. 1, Reinhold Publishing Corp., New York.
Eckenfelser, W.W.,Jr., 1959. Absorption of oxygen from air bubbles in water. Jo Sanit. Eng. Div., Amer. Soc. Civ. Eng., 85: SA4, 89.
Fellinger and Pigford, R.L., 1952. Absorption and Extraction. 2nd ed., MacGraw-Hill Book Company, Inc., New York.
Gameson, A.H. and Robertson, H.B., 1955. J. Appl. Chem., 5: 503.
Jørgensen, S.E., 1956. Reinigung häuslicher Abwässer durch Kombination eines chemischen Fällungs- und Lonenaustausch Verfahrens. Thesis, Karlsruhe University.
King, H. R., 1955. Mechanics of oxygen absorption in spiral aeration tanks. I. Derivation of formulas. Sew. Ind. Wastes, 27: 894.
Lewis, W.K. and Whitman, W.G., 1924. Principles of gas absorption. Ind. Eng. Chem., 16: 1215.
Molstad, M.C., McKinney, J.F. and Abbey, R.G., 1943. Trans. Am. Inst. Chem. Eng., 39: 605.
Morris and Jackson, 1953. Absorption Towers. McGraw-Hill Book Company, Inc., New York.
0^{\prime} Connor, A.H., and Robertson, H.B., 1958. Trans. ASCE, 123: 641. Oldshue, J., 1956. Biological Treatment of Sewage and Industrial Wastes. 1, Reinhold Publishing Corp., New York.
Sherwood, T.K., and Holloway, F.A.L., 1940. Trans. Am, Chem. Engrs., 36: 39.

