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CHAPTER 4 

K I N E M A T I C  FLOW THEORY 

IN'I'RODUCT ION 

Hydrological methods used regularly in practice for the design of 

stormwater drainage systems include the rational method and other 

isochronal methods. That is, they assume each point in the catchment 

has a unique travel time to the mouth. These methods do not account 

for storage in the system and the time variation in flow rates. 

Storage may occur on the surfaces of vegetation, roofs, walls, on the 

ground, in depressions and in channels. The storage may be permanent 

(retention) or temporary (detention). The relationship between flow 

depth and discharge and the effect of surface friction of the catch- 

ment are not accounted for either. The rational method and the iso- 

chronal methods are based on the assumption of uniform flow through- 

out the catchment. Concentration times in channels are calculated 

from steady-state water velocities and the dynamics of the system are 

not accounted for. In fact, there is a gradual increase in depth of 

flow with time at any point on the catchment and the depth of flow 

gradually increases down the catchment. The flow is therefore both 

unsteady and non-uniform. The time to equilibrium is therefore a 

function of rate of precipitation and it is not necessarily the travel 

time down the catchment. The kinematic method accounts for these 

factors in a simplified manner. It also accounts for catchment slope, 

roughness and infiltration. 

Flow rate and velocity are related to depth according to the dis- 

charge relationships. In fact even the assumption of  the steady state 
depth-discharge function can in some cases lead to error. Momentum 

and energy balance are necessary for a true representation of flow 

conditions through the system. Nevertheless, the full differential 

equations of motion, termed the Navier-Stokes equations, are complex 

and not warranted in most circumstances. Even the one-dimensional 

St. Venant equations can be simplified in many instances as will be 

illustrated later. 

EQUATIONS OF MOTION 

The differential equations describing one-dimensional flow in open 

channels may be derived from consideration of continuity and momentum 
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balance. The following assumptions are made at this stage: 

Flow is one-dimensional i.e. in one direction. Acceleration in 

the directions perpendicular to the flow direction is therefore 

neglected. 

The pressure at any depth is the hydrostatic pressure. 

Depth is constant across any section, i.e. the channel is rec- 

tangular. 

Momentum transferred to the flow from lateral inflow is negligi- 

ble. 

The fluid is incompressible. 

The uniform flow friction equation applies to non-uniform and 

gradually varied flow. 

The bed gradient is small, so that 0 = tan 8 = sin 8 =  S 
0 

(viii) Velocity is constant across any section. 

The continuity equation may be derived by considering the balance 

o f  flow across the boundaries of an element such as in Fig. 4.1. 

Fig. 4.1 Continuity of flow. 

Equating inflow to outflow plus increase in storage produces directly 

where Q is the flow rate, A is the cross sectional area, q, is lateral 

inflow per unit length in the x directLon and t is time. 

A dynamic balance is obtained by equatlng the unbalanced force across 

an clement to the acceleration and change in momentum across the ele- 

ment ‘IS illustrated in €ig. 4.2. 

I h u s ,  since F = wyA and Fs = wA S f d x ,  we have n 
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Re-arranging this, 

( 4 . 3 )  a(yA) + av 
g ax ax at 

a(AV2) 
+ A- = Ag ( S o  - Sf) - qiv 

If the channel is rectangular and flow is nearly uniform, this simpli- 

fies to 

g ( S o  - Sf) - qiV/A (4.4) g?Y +v- av + - av - - 
ax ax at 

Equations (4.1) and (4.4) were first published by St. Venant (1848). 

These can be solved numerically f o r  various cases of unsteady flow in 
open channels. The equations are not simple to solve. The inclusion of 

the terms for acceleration and change in momentum are in some cases not 

worthwhile, in which case solution of the equations is simplified. 

I 

v, A ,  Q, 

-----%- 

Fig. 4.2 Momentum balance in flow direction. 

In the above equations, F is a force, y is the depth of flow, 7 is 
the depth of the centroid, S o  is bed slope, Sf is friction gradient, 

g is gravitational acceleration, w is the unit weight of fluid, and v 

is the flow velocity. 

KINEMATlC EQLJATIONS 

In many cases of overland flow and even open channel flow, t h e  momen- 

tum change a n d  acceleration terms can be neglected. In fact this is 

equivalent to assuming that the energy line is parallel to the bed, i.e 
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Sf = so = s ( 4 . 5 )  

It is not difficult to imagine this holds in the case o f  overland 

flow. Over a distance of 100 metres the ground surface may fall of the 

order of one metre whereas the difference in depth o f  flow over the 

same distance will only be of the order of a millimetre. The correspon- 

ding difference in velocity head may be of the order of 10 mm. The re- 

sulting simplified equations are termed the kinematic equations. They 

are equivalent to the assumption of unsteady uniform flow. 

Most equations f o r  friction gradient can be written in a form relating 

depth o f  flow y to flow per unit width q, with an equation of the form 

q = z y .  

Here z is a constant involving g, Sf, and the fluid and surface pro- 

perties. F o r  laminar flow n is unity, while €or turbulent flow in rough 

conduits n is 2. Overton and Meadows (1976) indicate that in the case 

of overland flow the flow can be turbulent a very low Reynolds numbers 

(transition Re = iL/v = 20 to 2000). This is largely due to the effect 

of rain falling on the surface. Here i is the rainfall rate, L is the 

length of flow path and v is the kinematic viscosity of the fluid, water 

F o r  rough surfaces the popular Manning equation indicates a value for 

n of 5 / 3  and z is K S t / N ,  where N is Manning's roughness coefficient 

and K is 1 in S I  units and 1.486 in fps units. If the Manning roughness 

N is approximated by 0.13KkV6/gV2 the dimensionless Manning-Strickler 

flow equation results: 

(4.6) 
n 

q = 7.7(Sg)v2y5/3/k1/6 (4.7) 

The discharge equation must be considered together with the continuity 

equation (4.1) which when expressed in terms of flow per unit width, 

q, becomes 

3 + a Y = i  
ax at (4.8) 

wherc the excess rainfall rate ie = i - f and i is the rainfall rate 

and f is the loss rate, all per unit area. 

SOLUTION OF THE EQUATIONS FOR OVERLAND FLOW 

General solution of the two equations (4.6) and (4.8) is possible for 

various situations of overland flow and sometimes conduit flow. Numeri- 

cal solutions by computer are comparatively easy (Wooding, 1966; 

Constantinides and Stephenson, 1981) and many computer models are based 

on these simplified equations instead of the more rigorous differential 

equations. In many situations the equations are satisfactory even for 

conduit flow. This is the case for relatively steep gradients, but where 
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backwatering and rapid changes in flow or gradient occur, the rigorous 

equations must be employed. 

Woolhiser and Liggett (1967) analyzed the rising limb of an overland 

flow hydrograph using both the kinematic and the complete equations. 

Their results indicate that the kinematic form of the equations is 

reasonably accurate for gh/v2 greater than about 10 (h is the elevation 

difference down the length of the catchment and v is the equilibrium 

flow velocity at the end of the catchment). 

The value of the kinematic method lies in the feasibility of obtaining 

analytical solutions. Thus expressions describing the shape of a hydro- 

graph and the concentration time for different cases of overland flow 

and channel flow were derived by Wooding (1965) and others. 

The classical method of solution of the equations for overland flow 

is by the method of characteristics (Henderson, 1966; Eagleson, 1970). 

This method involves the substitution of total differentials for partial 

differentials while integrating along a so-called characteristic line 

where x is related to t. Elements of the method can be explained with- 

out a complete mathematical background. This is attempted in the follow- 

ing section in order to introduce the reader to some of the resulting 

solutions which have been achieved. 

Equations (4.6) and(4.8) may be used to derive some useful relation- 

ships in the case of constant excesses rainfall rate ie. 

Recall that q = zyn (4.6) 

(4.9) Then y = (q/z) 1 /n 

(4.10) 

(4.11) 

Z (4.12) 
1-l/n l/n 

= nq 
(i.e. consider an imaginary wave travelling at a speed 

n- 1 - _  i: - n z y down the basin). 

Then the total differential 

d y = a y + -  aY dx 
dt at ax dt 

= (ie - 3) + 9  1 /n- 1 ag 1-l/nzl/n - "9 l/n ax ax nz 
= ie 

(4.13) 

(4.14) 

(4.15) 

i.e. the depth of flow increases at the rate of excess rain when 

travelling at the speed & = n-1 down the basin. 
dt nzy 

Since &Y = i  
dt e 

it follows that y = iet 

(4.15) 

(4.16) 
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(4.17) 

n-1 tn (4.18) Integrating: 

Thus water starting at the beginning of the storm at the top of the 

n- 1 Hence - _  dx - nz(iet) 
dt 

x = zi, 

basin and travelling down the basin until x = L (the length of the 

basin) will reach x = L at a time given by 

and then q = zyn (4.20) 
n 

= z(iet) 
= zie n L/zien-l 

= Lie 

(4.21) 

(4.22) 

(4.23) 

Thus the outflow equals the input at this point in time and there must 

be equilibrium after this time. Thus tc is the concentration time of 

the basin. Note that it is not a function of the final equilibrium 

velocity at the mouth, but depends on the rate of flow buildup along 

the basin. In fact, the speed of propagation at any point is nv where 

the water velocity v = q/y (4.24) 

(4.25) n- 1 = z y  

The relationship between wave celerity and flow velocity may be seen 

by comparing (4.11) and 4.25). 

Thus the travel time at equilibrium is greater than the concentration 

time by the factor n (1.67 in the Manning equation). The practice of 

assuming that travel time equals storm duration for maximum peak run- 

off can therefore be unsafe as it results in an underestimate of design 

storm intensity. 

There is some confusion between concentration time, lag time, time to 

equilibrium and travel time, and various authors have adopted different 

interpretations. The following definitions are used throughout this 

text: 

Time t o  e q u i l i b r i u m ,  te 
to equilibrium flow conditions at the discharge point. It may be shown 

is the time from the commencement of the storm 

(4.19) that for a plane te=(Li l-n/ 

T r a v e l  t i m e ,  tt, is t h e  time it takes for a drop of water to proceed 
from the most remote part of the catchment to the discharge point. 

The water velocity varies in time and space, and the custom is to 

assume steady-state flows and varying velocities longitudinally. It 

equals inlet time (from overland and roofs) plus flow time in drains. 

It was shown that for a plane te=(l/n)tt. 

C o n c e n t r a t i o n  t i m e ,  is here defined as the time it takes for the flow 

to become steady at the discharge point. It is therefore equal to the 

1 /n 
e 
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time to equilibrium. Overton and Meadows (1976) on the other hand de- 

fine it as the travel time. 

L a g  t i m e ,  

runoff. It may be shown that for a plane tL=ln/:n+l)}t . 
S t o r m  d u r a t i o n ,  

the end of precipitation. 

tL, is the time between SO% of the rainfall and 50% of the 

td, is the time from the commencement of the storm to 

An expression for the discharge at the mouth of the basin is obtained 

as follows: At any time before the limiting characteristic (from the 

top end of the basin) reaches the mouth, then at the mouth, 

$ j = o  (4.26) 

This is because the depth at every point other than influenced by the 

upstream boundary increases uniformly at a rate i . 
Thus y = iet (4.27) 

(4.28) n 
and from (4.6) q = z(iet) 

If the rain stops at some time td at or after tC, then an expression 

for the falling hydrograph leg may be derived as follows: Since for 

equilibrium at any point before the rain stops 

q = xi (4.29) 

where x is the distance from the top end of the basin then from (4.6), 

e 

(4.30) n .  x = zy /Ie 

After the rain stops dy/dx = 0 and surface water will flow down the 

basin at a constant speed dx/dt = nzyn-l (4.11) 

(4.31) 

(4.32) 

dx ‘Thus x = x + - (t-t ) 
o dt d 

= zyn/ie + nzy n- 1 (t-t,) 

At the end of the basin x = L so the discharge is given by the implicit 

relation 

L = q/ie + nq 1 -  1 /nZ1/n(t-td) (4.33) 

The shapes of the rising and falling legs of the discharge hydrograph 

are illustrated in Fig. 4.5 for various cases. Three cases are illus- 

trated. For comparison purposes the total amount of rain has been 

assumed constant but the storm duration is varied. Thus for a storm 

which stops before tc = (L/zien-’)’ln, spatial equilibrium will not be 

reached. The rising limb will follow Equ. 4.28 until the rain stops. 

Then discharge will remain constant since depth will be the same over 

a length of basin until the effect of the upstream basin boundary 

reaches the mouth. ‘Then the hydrograph will fall. The case when t d = O  

is that of the instantaneous hydrograph. For the 1.imiting- case when 

rain duration equals the concentration time, the falling limb will 

immediately follow the rising limb. For longer duration storms the 

system will reach an equilibrium after t and the outflow will only 

flill when rain stops. 
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I f  the rain stops before t = tc, then the spatial equilibrium con- 

dition would not occur and the hydrograph would tail off at an earlier 

stage as illustrated in Fig. 4.5. 

Fig. 4.3 The runoff plane with precipitation 

EFFECT OF INFILTRATION 

Although the preceeding analysis allowed for losses during the storm, 

it was assumed that uniform losses ceased when rainfall ceases. In fact 

infiltration will continue as long as there is water on the surface. 

Wooding (1966), produced an analytical solution for the shape of  the 

hydrograph for different cases for n = 2. For storm durations greater 

than the concentration time, the rising limb and equilibrium discharge 

are as described previously. After the storm stops, we have 

In a similar way to (4.33)i.t may be shown that 

The outflow stops at 

y = yo - f(t-td) (4.34) 

(4.35) y~ = (i-f)' I i(t-td)2 + tc ~(i-f) 1 i -i(t-td) 

t = td + tc(i-f)/(if) t ( 4 . 3 6 )  

F o r  storm duration less than concentration time, the falling limb 

will have two components. Initially the flow depth will decrease uni- 

formly until the upstream boundary effect reaches the mouth, then the 

tail will decrease exponentially. The resulting different hydrograph 

shapes are depicted in Fig. 4.6. 
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a tc 5 t 5 td - Equilibrium hydrograph 

@ tC 5 t d< t - Falling hydrograph 
@ t  < t c  5 td - Rising hydrograph 

L Distance x 
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Fig. 4.4 Water depth along catchment 

Flow 

q 

- 
Time 1 

Fig. 4.5 Outflow hydrograph shape for different storm durations but 
similar total excess rain 
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Fig. 4.6 Effects of infiltration on catchment discharge 
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CATCHMENT - STREAM MODEL 

The assumption of a plane with uniform flow across the width is sel- 

dom a true picture. A catchment usually slopes down towards a centre 

channel. A more accurate representation appears in Fig. 4.7. Even this 

is a simplification, as overland flow will actually have a component 

towards the mouth and not just perpendicular to the stream. 

In cases where overland flow time is negligible (e.g. a long narrow 

catchment with a small longitudinal fall), the channel may be taken as 

the catchment, with excess rain per unit length of channel equal to 

that per unit length of catchment. In many cases the overland flow time 

is not negligible and the runoff relationship becomes more complicated 

than for overland flow. 

Analytical solutions are not feasible and numerical analysis was 

employed by Wooding ( 1 9 6 5 ) ,  to produce stream hydrographs. 

‘The ratio of concentration time of the stream or channel t to the 

concentration time of the overland flow to per uniform stream inflow 

is defined as T. 

Fig. 4.8 depicts the stream discharge hydrograph for different con- 

centration time ratios. The discharge rate is expressed as a function 

of the uniform excess rainfall rate ie and the total catchment area 

A.. Time is expressed in terms of the overland catchment concentration 

time t . The parameter is the ratio of storm duration td to overland 
catchment concentration time to. 

0 

Fig. 4.7 The catchment-stream model 
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t s / t o =  0.5 
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Fig. 4.8 Hydrographs for the catchment-stream model 
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SOLUTIONS FOR TYPICAL RAINFALL INTENSITY-DURATION CHARACTERISTICS 

Rainfall data for various stations throughout the world have been 

analyzed to yield depth of precipitation versus storm duration and 

return period. The form of the results varies with the analysis and 

the mathematical distribution selected but essentially the average 

intensity of precipitation decreases with storm duration for any selec- 

ted recurrence interval or return period. It is this fact which results 

in non-linearity between catchment area and peak runoff rate for any 

recurrence interval. The time of concentration, or time to peak, for 

any catchment is a function of the catchment size amongst other things. 

So it is apparent that the larger the catchment, other factors remain- 

ing constant, the longer w i l l  be the storm duration resulting in maxi- 

mum runoff, even though intensity of rainfall is bound to decline the 

longer the storm duration, other factors being equal. 

tlere kinematic methods are employed together with a generalized rain- 

fall distribution equation to estimate concentration times and peak 

runoff rates for a range of catchments. By rendering the results dimen- 

sionless, they may be applied globally. It is necessary to assume a 

rectangular catchment and uniform storm distribution. Numerical tech- 

niques must be employed for non-uniform and time-varying storms. 

An attraction of the kinematic approach is that all the variables 

are physically measureable. No empirical factors are required. The 

slope, roughness and length of catchment are a l l  measureable, although 

an approximate equation for friction gradient is employed. Infiltration 

and initial losses are still difficult to assess, but the U.S. Soil 

Conservation Service (SCS, 1972) has given guidelines. 

The present study can be applied to cases of uniform infiltration 

or an initial surface retention. A combination of these will approxi- 

mate to a diminishing loss with time i.e. a decay in loss rate. 

tC is referred to as the concentration time o f  the catchment. It was 

observed previously that it is a function of the catchment characteris- 

tics as well as the rate of excess rain i . It is therefore necessary 
to solve f o r  time of concentration as a function of excess rainfall 

rate, which in turn is a function of storm duration for any locality 

and return period. The rain is assumed uniform in time and space, but 

the losses may not be so. Initial retention may absorb some of the rain 

and infiltration may vary with time and antecedent conditions. 
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In the following analysis two simplistic loss models are employed 

in deriving analytically the concentration times and runoff for rec- 

tangular catchments. One model assumes all the losses to occur at the 

beginning of the storm, as would occur for catchment storage. The other 

model assumes a uniform rate of loss for the entire storm duration. 

Combinations of the two types of loss may be interpolated between the 

two extremes, which are plotted on accompanying charts. 

200 

100 

0 0.5 

MAP = 700 mm 

R I  = 20 y e a r s  

Inland region 

h y e t o g r a p h  f o r  0.5 h s t o r m  

Durat ion - h 

F i g .  4.9 Typical rainfall intensity-duration relationship 

STORM INTENSITY - DURATION RELATIONSHIPS AND SOLUTION FOR TIME OF 

CONCENTKATION 

1 .  

For any particular locality and recurrence interval, there is a 

statistical relationship between storm duration and intensity. Analysis 

of storms through the world indicate that the storm intensity may be 
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predicted with 

where a, b and 

Meadows (1 976) 

in some cases. 

reasonable accuracy with an equation of the form 

(4.37) 

c are regionally applicable constants. Overton and 

and Stephenson (1980) found c to be approximately unity 

Thus in many situations it is possible to approximate 

the relationship by one of the form 

a 
b + td I = -  (4.38) 

where td is the storm duration, and la1 is a function of the locality 

and return period. It was proposed by Lloyd-Davies that the maximum 

peak runoff for any recurrence interval will occur if the storm lasts 

only as long as it takes to reach equilibrium conditions. A longer 

duration storm will be of lesser intensity and a shorter duration storm 

will not reach equilibrium. It is now realized this is not always the 

case. The maximum peak runoff for abnormal basin shapes can occur from 

a storm over portion of the catchment. The present study is confined 

to rectangular shaped catchments which eliminates this possibility. 

It may also occur that there is an initial retention loss in which case 

the storm duration should exceed the theoretical concentration time 

of the basin for maximum peak runoff. This possibility will be examined 

later. In that case the concentration time is measured from the time 

runoff commences. Whether o r  not initial abstraction takes place, it 

is possible to solve for design storm duration td and peak runoff i 

from the equation for concentration time and the storm intensity re- 

lationship such as (4.37). The total depth of loss is designated s, 

in the same units as ti, where i is the rainfall rate and t is time. 

Subscript i refers to initial loss and u to uniform loss rate in time. 

eP 

Case I - U n i f o r m  Zoss r a t e  

For a uniform loss rate over the entire storm duration 
i = i - f  
e 

'uItd 
= i -  

In general if 
i =  

(4.39) 

(4.40) 

(4.37) 

(4.19) n-1) l/n and tc = (L/zie 
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then by substitution of (4.37) into (4.39) and (4.39) into (4.19), one 

obtains an implicit expression for the design storm duration td: 

(4.41) 

I f  the Manning-Strickler stage-discharge equation is employed and c 

is taken as unity, 

1 5"- 
td = ( L k 6 / 7 .  7 G )  ~ 

(4.42) 

(4.43) 

(4.44) 

is defined as the catchment retardation factor and 

U = s / a  (4.45) 

is defined as the infiltration factor. Equ. (4.43) cannot be solved 

explicitly for td or for the peak runoff rate so the equation was solved 

for 17 as a function of t and U €or various values of b. The results 

are summarized in Fig. 4.10, from which the concentration time may be 

read knowing the catchment characteristics, namely length L, absolute 

roughness k, slope S, storm characteristic a and uniform infiltration 

loss s . Unless the storm duration is known, it may be difficult to 
assess s . 
stead of the total volume lost, and the dashed lines on Fig. 4.10 

may therefore be of more use in estimating concentration times. Once 

U 

U 

In many cases the infiltration rate f = s /td is known in- 
U 

f and td are established, su may be evaluated. The maximum storm run- 

off rate may now be evaluated from the equation 
s a U - - i =  

(4.46) ep b + td 

td 

which is plotted in Fig. 4.12 in dimensionless terms with td=tc 

evaluated from Fig. 4.10. Subscript e refers to excess rain and p to 

that corresponding to peak runoff rate. It will be observed that the 
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maximum rate of runoff per unit area does not occur for small smooth 

basins, except for no losses. For real losses represented by U there 

is some basin configuration represented by F which results in a higher 

rate of' runoff per unit area. This is because for any U the rate of 

loss reduces with increasing F and hence increasing t and this effect 

predominates over the lower storm intensity. On the other hand for short 

storms, the rate of loss would have to be high to produce a certain U, 

hcnce the rate of runoff is affected. 

C' 

Uniform infiltration factor 
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Fig. 4.10 Design storm duration for uniform losses, b = 0.4 h 
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Case 11 - I n i t i a l  l o s s  

If all the storm input is initially absorbed or taken up in filling 

depression storage, runoff will not commence until the storage is full 

If the storage or loss volume is s .  per unit area, then the time until 

runoff commences is 

t. = s./i (4.47) 
1 1 

For peak runoff, 

3 
- (Lk6/7.7G) 

(b + a td 13 

Therefore td = F(b+td)’ + I(b+td) 

where I is the initial retention factor, si/a. 

(4.48) 

(4.49) 

This equation was solved for F for various td and I and the results 

are plotted in Fig. 4.11 for various values of I. It will be noted 

that the resulting storm durations for peak runoff are invariably 

greater for initial losses than for uniform losses. 

It will be observed from Fig. 4.12 however, that the peak runoff 

rate is higher for initial loss than for uniform loss. For no loss 

both theories yield identical results as would be expected while for 

increasing losses the results diverge. The peak runoff per unit area 

for case 11, however, occurs for the smallest, smoothest and steepest 

catchment. 

For losses comprising a combination of initial storage and uniform 

infiltration, Fig. 4.12 may be interpolated, taking note that each line 

for a particular loss function is drawn assuming the other type of 

loss is zero. 

S u r f a c e  l o s s e s  

The losses to be deducted from precipitation include interception on 

vegetation and roofs, evapotranspiration, depression storage and in- 

filtration. The remaining losses may be divided into initial retention 

and a time-dependent infiltration. 

The loss function is really a function of many variables, including 

antecedent moisture conditions and ground cover. Infiltration is time- 

dependent and an exponential decay curve was proposed by Horton (19391, 

Holton (1961), and others. The infiltration typically reduces from an 
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i n i t i a l  r a t e  o f  a b o u t  50 mm/h down t o  1 0  mm/h o v e r  a p e r i o d  o f  a b o u t  

an hour .  The r a t e s ,  e s p e c i a l l y  t h e  t e r m i n a l  l o s s  r a t e ,  w i l l  be h i g h e r  

f o r  c o a r s e  s a n d s  t h a n  f o r  c l a y s .  

100 

F i g .  4 . 1 1  Des ign  s t o r m  d u r a t i o n  f o r  i n i t i a l  l o s s e s ,  b = 0 . 4  h 

The t i m e - d e c a y i n g  l o s s  r a t e  c o u l d  be a p p r o x i m a t e d  by an  i n i t i a l  l o s s  

p l u s  a u n i f o r m  loss o v e r  t h e  d u r a t i o n  o f  t h e  s t o r m .  V a l u e s  o f  i n i t i a l  

and u n i f o r m  l o s s e s  used  i n  t h e  U n i t e d  S t a t e s  a r e  t a b u l a t e d  i n  T a b l e  4 .  

The mean un i fo rm l o s s  r a t e s  a r e  a v e r a g e s  f o r  s t o r m s  o f  3 0  m i n u t e  d u r a -  

t i o n ,  and t h e  i n i t i a l  l o s s e s  i n c l u d e  t h e  i n i t i a l  1 0  minute r a p i d  i n -  

f i l t r a t i o n  o r  s a t u r a t i o n  amount.  
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Fig. 4.12 General peak runoff, b = 0.4 h 

TABLE 4.1 Initial and uniform loss rates 

SURFACE LOSSES 
-~ ~ 

Initial loss - (mm) Uniform infiltration 
rate - (mm/h) 

Surface Infiltration 
Retent ion - - 

- Paved up to 1 0 
Clay ” 5 20 2-5 
I, o am ” 5 30 5-15 
Sandy s o i l  “ 5 40 15-25 
Dense vege- ” 1 2 - 

tation 
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In the case of ploughed lands, and other especially absorptive sur- 

faces an additional initial loss of up to 10 mm or more may be included. 

Allowance must also be made for reduced losses from covered areas 

(paved or roofed). The values should be used with caution until more 

appropriate data are available. 

Roughness 

The Manning-Strickler drag equation is dimensionally homogeneous. By 

including the absolute roughness k as a variable, it loses the empiri- 
cism of the Manning equation. In fact the drag effect is very insensi- 

tive to the roughness, as it is to the power of 1 / 6 .  Thus any inaccuracy 

in selecting k is masked by the equation. It is preferable to over- 

estimate k as the drag equation tends to predict too rapid flow con- 

centration unless this is done. This is due to the tortuosity of the 

flow path over rough surfaces. In fact the original form of the Manning 

equation and the Strickler approximation for the roughness were never 

intended for overland flow where the depth of flow is comparable with 

the roughness and Reynolds numbers are of the order of 1 000. Table 

4.2 may be used as a guide for surface roughness k. 

TABLE 4.2 Surface roughness 

ABSOLUTE ROUGHNESS, k (mmj 

Concrete lined 

Concrete paving 1 
Gravel 5 
Lawn, turf 20 
Weeds 5 0  
Ploughed land 1 5 0  
Boulders and rubble 500 
Dense vegetation 1 O O O +  

storm drains 0.5 

The length of drainage path and slope influence the concentration 

time more than the roughness. Runoff follows a circuitous path over 

natural land and the ground slope along the flow path is therefore 

flatter than the net slope. A similar lag occurs with runoff from roofs 

(2 to 5 minutes lag). Allowance should be made for these effects in 

establishing the retardation factor F. 
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EXAMPLE : 

The example illustrates the use of the design charts for determining 

design storm duration, peak runoff and the effect of canalization. The 

use of consistent units in the equations should be noted. 

Calculate the peak 20-year runoff from a catchment which is 500 m 

wide m d  2 000 m long with a uniform longitudinal slope of 1/500, and 

an effective absolute roughness of 10 mm. The infiltration rate is 20 mm 

per hour. Neglect overland flow time for the purposes of the example. 

The 20 year storm factor 'a' for the station is 90 mm and the time 

€actor ' b '  is 0.4 h. 

The retardation factor is 

F = [  2 000 x 0.01 - - 
7.7 J 9 . 8 /  500 0.09' 

151 s o.6 

UniPorm retention factor for total loss U/td= 20/90 = 0.222 perh. 

Interpolating between the lines on F i g .  4.10 storm duration 

= 2.2 h, therefore U = 0.48 and from Fig. 4.12 i /a = 0.16/h. The peak 

excess runoff is therefore i = 0.16 x 90 = 14.4 mm/h. The peak rate 
eP 

of runoff is 14.4 x 500 x 2 0 0 0 / 3  600 x 1 0 0 0  = 4.0 m3/s. The value of 

'C' in the rational formula is 

eP 
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