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CHAPTER 5 

NUMERICAL SOLUTIONS TO KINEMATIC FLOW 

NUMERICAL METHODS 

The kinematic method has a number of advantages over other methods: 

1 .  The mathematics are simpler than those of the comprehensive hydro- 

dynamic equations, although hydrodynamic forces are omitted. 

2. It is relatively simple to visualize the flow process described by 

the kinematic equations. 

3. The gradual increase in water depth over a catchment during a storm 

can be simulated. This allowance for dynamic effects is not possible 

with isochronal techniques. The latter techniques use only the fric- 

tion equation for steady state flow with no allowance for continuity. 

4. The effect of storm intensity influences the concentration time of 

a catchment as it should. This is not the case with isochronal 

methods. 

5 .  The equations are amenable to analytical solution in many cases. 

6. Numerical solutions are feasible and simple for non-rectangular 

catchments, varying topography, spatial and temporal variation of 

storms and losses and combinations of overland and conduit flow. 

Various workers (eg. Overton and Meadows, 1976) have employed the kine- 

matic equations for catchment models. 

EFFECT OF STORM DISTRIBUTION ON RUNOFF 

Many hydrological studies are made on the assumption of a rectangular 

catchment and uniform storm distribution in space and time. Numerical 

simulation models such as SWMM (the overland flow components) and 

analytical models such as those of Wooding (1965) are based on rectan- 

gular basins. The effect of an uneven and non-planar basin can be to 

increase the intensity of runoff for a storm of any particular return 

period. A basin with its centre of gravity close to the mouth can re- 

sult in a more severe runoff than a long rectangular basin or one with 

the centre of gravity further up the basin. Similarly a storm with a 

focus close to the mouth of the basin will result in a more intense run- 

off than a storm which is uniformly spread over the catchment. 

An allowance for non-uniform storm distribution can be made with the 

tangent method of design. That technique, however, is based on uniform 

flow down the basin and the time of concentration is therefore inaccu- 

rately predicted. The true dynamic concentration of the storm in the 

basin must be predicted from the equations of motion. In many cases 

these can be approximated by the kinematic equations. These equations 
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are capable of analytical solution in many cases of uniform shaped 

plane basins and uniform storms. For irregular shaped basins and hyeto- 

graphs, it is necessary to solve these or the rigorous hydrodynamic 

equations numerically. 

It is the purpose of this section to demonstrate with the aid of the 

kinematic equations of flow how catchment shape and hyetograph shape 

affect the discharge hydrograph shape and effective rime of concentra- 

tion. A planar quadrilateral shaped basin is assumed and lateral flow 

time (perpendicular to the general direction of flow) is assumed neg- 

ligible. In one case the basin is assumed to be rectangular with the 

slope in one direction parallel to two opposite sides. The excess rain 

is assumed to increase from zero to a maximum and then decrease to zero 

again over a defined time. The resulting hyetograph is triangular. This 

distribution i n  one extreme case could also account for a time-varying 

infiltration rate. In another case, the excess rain is assumed to vary 

spatially in a triangular fashion from zero at the top of the basin to 

a maximum along the basin. Thus the basin may be rectangular with the 

storm varying in intensity down the length of the basin (Fig. 5.4) or 

the storm could be of uniform intensity while the basin width varies 

down the length (Fig. 5.5). 

GENERAL EQUATIONS 

Start with the basic kinematic equations: 

Continuity 
( 5 . 1 )  

Dynamic equilibrium q = z y n (5.2) 

or ( 5 . 3 )  

where z = 7 . 7 J G  /k& and n = 5/3 employing the Manning-Strickler 

equation. 

Equation 5.2 is the more general equation for uniform flow but the 

constants are dimensionally dependent. 

In these equations, z is a factor, n is a coefficient, x is dis- 

tance in the flow direction, t is time, y is flow depth, g is 

gravitational acceleration, S is the bed slope, equal to the fric- 

tion energy loss gradient, q is the discharge rate per unit width, 

i js the excess rainfall rate per unit area after subtracting in- 

filtration and other losses, and k is a measure of surface roughness. 



80 

Substituting for y from (5.3) or (5.2) in (5.1) we get 

The equation may be rendered dimensionless by substituting 

P = q/Liea 

I = i /iea e 

where i is the time and space averaged excess rainfall rate over the 

catchment and L is the length of catchment in the direction of flow. 

Now (5.5) becomes = n(pP) 

ea 

( 5 . 1 0 )  a p  l-l/n(I - -) a p  
ax 

(5.11) ap  
= 2 . 2 ~ ~ - ~ ( 1  - 

epliea 
where p is the ratio of peak to average excess rain intensity i 

which is 2 for a triangular distribution. 

It may also be proved that 

T = t/tc (5.12) 

where tc is the time to equilibrium or concentration time of a rectan- 

gular plane catchment subject to uniform (in time and space) excess rain. 

For that case analytical solutions to the kinematic equations are 

feasible. Thus the rising limb of the hydrograph at the end of a catch- 

ment is given by 

q = ieL(t/tc)q3 

where tC = (L/ziea n-1) l/n 

L 0.6 k 0.1 - - -- 

7 .  7 o.6 ( S g )  0*3iea0-4 

(5.13) 

(5.14) 

(5.15) 

hence P = T 513 (5.16) 

The falling limb of the hydrograph, beyond t = t is given by the im- 
C 

plicit equation 
n- 1 

L = zyL [y,/ie + n(t-td)/yL] (5.17) 
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which may be rewritten for the case of rain duration td equal to time 

of concentration tc as 

T = 1 + (l-P)/(nP1-l'n) (5.18) 

(5.19) = 1 + (l-P)/(T 5 P0.4) 

The rising and falling limbs may be plotted from (5.16) and (5.19) as 

in Fig. 5.3. For other cases, where rainfall is not uniform in time 

and space, numerical solutions are necessary. For this purpose (5.9) 

was solved for specific cases. 

SOLUTIONS FOR NON U N I F O R M  AND UNSTEADY STORM INPUT 

Equation (5.9) was solved iteratively using a backward difference 

explicit finite difference solution technique. Acceptable accuracy was 

obtained with AX = 0.05 and AT = AX gave a stable solution. The finite 

difference form of the equation became 

P(Xi,T.) = P(X.,T. )+2.2 AT P(x~,T. )o'~{(I-[P(x~,T. 
1 1 J - 1  1 - 1  1 - 1  

-P(Xi-, ,Ti-1)] /AX) (5.20) 

At T = 0 this explicit form of (5.9) would yield zero increment in 

P(x) so a centred explicit - implicit numerical form was employed i.e. 

P(Xi,T2) = 0 + 2.2 I ATIP(Xi,T1) + P(Xi,T2)]a4/2 

... P(Xi,T2) = (2.2 IAT/2)Y3 

The scheme was used to study two particular cases: 

( 5 . 2 1 )  

(5.22) 

1.0 
1 

T - t / tc  where tc Is 
concentrat ion t ime f o r  
uniform excess r a i n  lea 

Fig. 5.1 Excess rain variation with time 

I .  T i m e  v a r y i n g  rain i n t e n s i t y  
A rectangular plane basin sloping in the longitudinal direction was 

analyzed for different cases of unsteady rainfall input. Excess rain- 

fall was assumed to be spread uniformly over the basin, but it was 
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permitted to vary in time. The storm duration was set equal to the con- 

centration time of a rectangular basin subject to uniform excess rain 

rate equal to the mean for the non-uniform case. A triangular hyeto- 

graph was assumed with the peak varying successively in time for diffe- 

rent cases from the start of the storm to the end of the storm, i.e. 

F = t /td = 0 to 1 where t is the storm duration and t 

peak of the storm (see Fig. 5.1). 

is the time to 
P d P 

'The case could be applied to the excess rain after subtracting losses, 

infiltration etc. Alternatively a decaying rate of infiltration could 

he allowed for. A rectangular storm hyetograph with a straight line 

decrease in losses may in some cases be approximated by a triangular 

excess rain hyetograph with the peak at the end of the storm (Fig.5.2). 

1" F. = I .  0 

I 

Fig. 5.2 Rectangular hyetograph with decaying losses resulting in 
triangular excess rain distribution with time 

The resulting runoff hydrographs at the mouth of the basin are de- 

pictPd in Fig. 5.3. Thus it will be observed that as Ft (the relative 

time to storm peak) varies from 0 to 1 ,  so the effective concentration 

time of the basin increases, i.e. the time to peak of the runoff hydro- 

graph increases. The peak runoff also increases the later the storm 

peak although it i s  always less than the peak excess rain rate which 

i s  Zi L per unit width for a triangular storm distribution. In fact 

the worst storm distribution occurs with a storm peak at the end of 

the storm, and for this case the peak runoff i s  1.4 ieaL per unit 

width. 

ea 

For comparison the runoff hydrograph for a rectangular storm i s  in- 

dicated in dashed lines in Fig. 5.3. The rising limbs of hydrographs 

for storm durations exceeding the nominal concentration time of the 

basin are also indicated. Here the storm intensity is assumed to in- 

crease linearly with time, reaching a maximum at the end of the storm 

(tP = td) * 
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Fig. 5.3: Runoff hydrographs for triangular storm time distribution. 
= time to peak of excess rain and storm Ft = t /tcwhere t 

duration td = tC = concentration time for rectangular storm 

input except for F>1 

P P 
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If the precipitation rate was constant over a duration equal to the 

concentration time of the catchment, 

occur at the end of the storm and would be equal to ieuL per unit width 

of catchment, where ieu is the uniform excess rainfall rate. This case 

is generally accepted as the worst storm for any particular return 

period and the duration of the design storm is thus selected. In the 

case of an unsteady (time varying) storm it is difficult to solve dir- 

ectly for the storm duration which will result in the maximum peak run- 

off. According to Fig. 5.3 for the case of a storm peaking at the end 

(Ft = 1 )  the peak runoff occurs at t = tc so a storm duration equal to 
tc will result in maximum peak runoff, whereas for a storm peaking at 

the beginning (Ft = 0) the peak occurs before t = tC so a shorter storm 

will probably result in the maximum peak runoff. Also a storm with a 

longer duration than t may result in the maximum peak runoff if the 

storm peak occurs at the end. 

tc is that which peaks at the end (Ft = 1.0). A time decaying infilt- 
ration loss can have the same effect on a uniform storm. A rectangular 

hyetograph could be transformed to a triangular one with the maximum 

excess rain at the end. In this case the peak runoff would be 40% 

higher than that for a storm with a constant loss rate. 

tc, then the peak runoff would 

C 

It will be apparent from Fig. 5 . 3  that the worst storm with duration 

II. Space  v a r y i n g  r a i n  input 

Consider the case of a rectangular plane basin with a steady storm 

intensity varying down the length of the basin. Storm intensity is 

assumed constant with time and the excess rain intensity is triangular 

with a peak somewhere along the basin, defined by Fx = x /L between 

zero and one (Fig. 5.4). The rising limb of the resulting discharge 

hydrograph is depicted in Fig. 5.6. 

P 

ie D 

Fig. 5.4 Excess rain variation along basin 



It will be observed that in all cases the hydrograph peaks near the 

concentration time of a uniform storm hydrograph (the dashed line in 

Fig. 5.6 is for a uniform storm in time and space). The hydrograph 

rises much faster in the case of a storm whose peak is at the mouth of 

the basin (Fx= 1 )  and much slower in the case o f  the storm with a peak 

at the top end of the basin (Fx = 0). A storm with a duration less than 
the nominal concentration time of the basin may therefore result in a 

higher peak runoff if its centre of gravity is near the mouth of the 

basin. 

uniform excess rain ie 

i w  rnax basin width W varies l inearly with X 
channel width 

x =  0 

neglecting overland f l o w  time 

Fig. 5.5 Varying basin width 

The same chart applied to the case of a basin whose width varies from 

zero to a miximum somewhere along the basin and then back to zero at 

the end (Fig. 5.5). Provided lateral flow time can be neglected, the 

effective excess rain input at any point x along the collecting channel 

of width w is ie = ieuW/w where ieu is the uniform excess rainfall rate 

and W is the basin width. The mean excess rainfall is i* = i W /2w. 

The values of i, and iea*are used in place of ie and iea respectively 

in Fig. 5.5 t o  yield the discharge q per unit width of channel. If 

lateral flow time is significant it is necessary to correct for this. 

An approximation is to move the true storm peak upbasin by the lateral 

flow distance. 

ea eu max 

It is evident that a basin which is wider at the mouth than upstream 

will result in a hydrograph which rises more rapidly initially than f o r  

a rectangular basin. Thus a storm duration less than the concentration 

time of the basin may result in the maximum peak runoff. It would be 

necessary to obtain the storm duration resulting in maximum peak runoff 
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MuZtipZe variations 

Fig. 5.7 applies to a storm which increases linearly in intensity 

towards the mouth of a rectangular catchment and also increases linearly 

with time. For this figure i is taken as the excess rainfall rate 

occuring half way down the catchment at a time equal to half the con- 

centration time for a uniform storm. It will be observed that the peak 

runoff for a storm with duration tc would be 1.65 times the mean excess 

rainfall rate multiplied by basin area. This is even higher than that 

resulting from a time-increasing storm with even distribution down the 

basin (Fig. 5.3) as could be expected. 

ea 

5.0 

4.0 

3.0 

-I 2.0 
0 
al - 
\ 
0- 

a 
1 .  0 

0 

I I I 

0 0 . 5  I. 0 1.5 2.0 

0.4 
- t  - -  7.7 OS6 (sg)0-3 i e o  t 

T =  
,-0.6 kO.I  tc 

Fig. 5.7 Rising discharge hydrograph for rainfall increasing uniformly 
towards mouth of rectangular basin and uniformly in time. 
i occurs at X = 0.5 and T = 0.5. ea 
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T - 0  'eP T -  t / L  

L1 
0 X - - X / L  I .  0 

Fig. 5.8 Storm travelling along basin 

Fig. 5.9 depicts the hydrographs from a rectangular basin with a 

travelling storm. For two cases the storm distribution down the basin 

is triangular. The peak of the triangle is assumed to travel at a speed 

L/tc up or down the basin (see Fig. 5.8) but the storm is confined to 

the basin for its duration. The storm duration is taken as tc. The peak 

runoff intensity for a storm travelling down the basin is more severe 

than for a storm travelling up the basin. 

Also depicted on Fig. 5.9 are the discharge hydrographs for a rec- 

tangular storm travelling up or down the basin. The excess rain is uni- 

form over the area of precipitation, and the storm is across the entire 

width of the basin, but is of limited longitudinal extent. The length 

of storm path is assumed equal to the length of the basin, and the storrr 

front travels up or down the basin, starting at one end and continuing 

along and beyond the basin (Fig. 5 . 1 0 ) .  

SUMMARY OF EFFECTS OF STORM DISTRIBUTION 

The effect of non uniform storm distribution, whether in space or 

time, is generally to increase peak runoff from a basin. Simple trian- 
gular storm distributions were analyzed by numerical solution of the 

kinematic flow equations to illustrate the effect and to produce genera- 

lized design charts. 

A storm which peaks near the end of its duration can cause a runoff 

intensity 40 percent higher than a uniform storm of the same average 

intensity. The same effect manifests with a decaying infiltration rate. 

Storms which are more concentrated near the mouth of the basin than 

further upstream may result in a higher runoff than a uniformly spread 
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Fig. 5.9 Discharge hydrographs due to travelling storm of duration t 



90 

Fig. 5.10 Travelling rectangular storm 

storm. Similarly basins which have the centre of gravity of the area 

near the mouth result in higher peak runoff ,than rectangular basins. 

A storm travelling down a catchment will result in higher peak runoff 

than the same storm travelling upstream. 

The assumption of uniform storm intensity and distribution can only 

yield average figures for any selected return period of rainfall. The 

number of variables contributing to the intensification of runoff imply 

the probability of exceedance of a particular runoff rate may be greater 

than is indicated by a statistical analysis of isolated rain gauge 

records. 

TWO-DIMENSIONAL MODELS 

The assumption of a one-dimensional flow off a rectangular plane 

catchment is often inaccurate. Many catchments vary topographically 

in two dimensions. Hills and valleys cause runoff to flow in varying 

directions. Flow will at all times be perpendicular to the contour 

lines under the assumption of kinematic flow. In addition to 

the flow path due to the lateral flow, lateral slopes may also result 

in flow concentra$tions in valleys with resulting effect on concentration 

time. Thus for large catchments a two-dimensional analysis is desirable. 

dimensional case. 

The continuity equation becomes 

The kinematic equations may readily be generalized for the two- 

( 5 . 2 3 )  
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There are two components of flow in the x and y directions, and con- 

sequently two discharge-depth equations: 
1 

(5.24) 

(5.25) 

where qt = Jqx2+qz2 , a 
in the Manning-Strickler equation. The resulting equations can be solved 

across an x-z grid at successive time increments using numerical methods 

Constantinides (1981) found that a backward central explicit difference 

scheme yielded satisfactory results with minimal computational time. 

= 7 . 7 c / k * 6  (similarly for az), and m = 5/3 

Two-dimensional models can readily be extended to allow for varying 

surface roughness l o s ses ,  canalization and storm distributions in time 

and space. Where discontinuities are present such as in built up areas, 

it may be easier to use one of the available simplistic runoff models 

such as SWMM or ILLUDAS. 

ANALYSIS OF FLOW IN PART-FULL PIPES 

Simulation of flow in part-full circular conduits is more complicated 

than for overland flow. Nevertheless the same basic kinematic theory 

applies. It is convenient to adopt polar axes instead of Cartesian axes 

f o r  circular conduits. On this basis a computer program for analysing 

flow in pipe networks was prepared. The system is assumed to comprise 

overland flow planes connected to pipe inlets. 

O v e r l a n d  f l o w  

In analyzing the flow over the sub-catchments draining into each in- 

let, the assumption is made that the sub-catchment is rectangular with 

a width equal to the length of drain pipe into which the sub-catchment 

drains. This simplification is mainly to reduce data preparation to a 

minimum, and the relevant input line could readily be varied to feed in 

sub-catchment width. For overland flow the cross-sectional area per 

unit width of catchment is y. The concentration time of a plane is, 

adopting the Manning-Strickler equation for friction gradient, 

(5.26) 
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Kinematic equations f o r  part-full circular conduits 

One starts with the kinematic equations in the form 

(inflow per unit length) * a Q  - 
a t +  ?C - q 

so = Sf 

Using the Manning equation to predict friction gradient, 

and from the Strickler approximation for N, 

N = 0. 1 3 K k u 6 J g  therefore 
7 . 7 6  A5'3 

k *6 P 2'3 
Q =  

( 5 . 2 7 )  

( 5 . 2 8 )  

( 5 . 2 9 )  

( 5 . 3 0 )  

( 5 . 3 1 )  

No allowance for losses at manholes is made as this is usually included 

in the grading of successive pipes. 

The cross-sectional area of flow in a circular conduit running part 

full (see F3g. 5 . 1 2 )  is 

( 5 . 3 2 )  

( 5 . 3 3 )  

0 0 0  
2 2 A = - 1 

0 and P = U7 

'Thus if onc takes 0 as t.he variable, the continuity equation becomes 

D2 ( - cos- sin-) 

( 5 . 3 4 )  

In finite difference form, solving for 0 after a time interval At, 

( 5 . 3 5 )  

and in terms of the new 0, 

In order to simulate the flow and depth variations in the pipes, the 

latter two equations are applied at successive points for successive 

time intervals. 

It will be observed that it should never be necessary to consider 

surcharged conditions in a design. If p i p e s  are designed to run just 

Eull at their design capacity, then they will run part full for any 

other storm duration. The higher up the leg a pipe length is, the 

shorter will be the concentration time, or time to flow equilibrium. 

The design storm duration will equal the concentration time of the 

drains down to the pipe in question. Any subsequent pipes will have 

larger concentration times and consequently a lower storm intensity. 
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Fig. 5 . 1 2  Cross section through part-full pipe. 

Pipes higher up will therefore run part-full when a lower pipe is at 

its design capacity and running full. 

The preceding scheme was employed in a program for analyzing the 

flow in each pipe in a drainage network the plan which is specified by 

the designer. The engineer must pre-select the layout, sub-division 

of catchment, position of inlets and grades. The grades will in 

general conform to the slope of the ground. 
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APPLICATION IN DESIGN 

Few existing storm drain design methods allow for the increase in 

flow in the drain until equilibrium is reached. Nor is there often 

allowance for the fact that upper drains are designed for a more in- 

tense storm than lower drains. The upper drains have small concentra- 

tion times and consequently the design storm duration is small. Lower 

drains will be designed for longer duration storms. Consequently the 

upper drains may not flow full when the lower drains are at their de- 

sign capacity. 

It is in fact necessary to simulate the flow overland and in each 

upper drain in order to size any particular lower drain. Such analysis 

can only be done practically by digital computer using numerical solu- 

tions of the flow equations. Many calculations are necessary for com- 

plex networks. A limitation on the maximum time interval for numerical 
stability implies many iterations until equilibrium flow conditions are 

reached for each pipe design. In addition, a number of dif'ferent storm 

durations must be investigated for each pipe. A simple and efficient 
iterative procedure was therefore sought in order to minimize computer 

time. The kinematic form of the flow equations was employed to ensure 

this. The emphasis throughout the program is simplicity of data in- 

put and minimization of computati.ona1 effort. Obviously some accuracy 

is sacrificed hereby, but the overriding assumption of precipitation 

pattern is probably more important. Sensitivity analysis and refine- 

ment can, if justified, be done with more sophisticated analytical 

models. 

The simulation proceeds for successive pipes, the diameters of which 

are known. The same analytical procedure may be employed for design, 

that is the selection of pipe diameters. Starting at the top end of 

a drainage system, one sizes successively lower pipes. Thus each pipe 

upstream of the one to be,designed, is defined. It is necessary to 

investigate storms of different duration and intensity of flow to 

determine the design storm resulting in maximum flow for the next pipe. 

It is assumed that the design storm recurrence interval is pre-selec- 

ted. The intensity-duration relationship is assumed to be of the form 
a i = -  

e b + t d  (5.37) 

By selecting storms of varying duration td, and simulating the flow 

buildup down the drains, the program can select a storm which will 

result in the maximum peak flow from the lower end of the system. That 

discharge is the one to use for sizing the subsequent pipe. Thus the 
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program proceeds from pipe to pipe until the entire network is designed. 

It should be noted that the network layout and pipe grades are pre- 

selected. 

The sophistication of gradient optimization by dynamic programming 

(Merrit and Bogan, 1973; Dajani and Hasit, 1974) would add considerably 

to the computational cost. Other optimization techniques (Argaman et al, 

1973; Yen and Sevuk, 1974) also add to the computations and omit the 

factor of decreasing storm intensity for lower sewers. 

The algorithm was employed to design the drain size for the layout 

depicted in Fig. 5.13 . Input data and output are appended. 

3 \-drain 
‘drain number 

bow dory 

Fig. 5.13 Layout plan of drainage network sized in example 
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COMPUTER PROGRAM FOR SIZING DRAIN PIPES IN NETWORKS 

Assumptions in computer vrograrn 

Pipes are assumed to flow initially at a depth corresponding to a 

subtended angle of 0 . 2 ~  at the centre. The corresponding flow is very 

low, but this assumption avoids an anomaly for the case of zero depth 

when the numerical form of the equations is unrealistic. 

Inflow from subcatchments is assumed to occur along the full length 

of the respective pipe, i.e. subcatchment breadth is assumed to be 

equal to pipe length. This affects overland flow time to some extent. 

If necessary (if flow is sensitive to storm duration) the subcatchment 

friction factor could be adjusted to give the correct overland flow 

time. 

The computer program, written in FORTRAN for use in conversational 

mode on a terminal connected to an IBM 370 machine, is appended. The 

input format is described below. Data are read in free format and can 

be input on a terminal as the program stands. 

First line of data: 

M, A, B, E, IN, IR, 11, G. 

Second and subsequent lines of data (one line for each length of pipe): 

X(I), s(I), z(I), c(I), SO(I), EO(I), IB(1). 

The input symbols are explained in the appended list and elaborated 

below: 

M - The number of pipes: the number of pipes should be minimized for 

computational cost minimization. For computational accuracy the 

pipes should be divided into lengths of the same order of magnitude 

It is convenient to make the pipe lengths equal to the distance 

between inlets. Inlets between 10 and 200 m apart are normally 

sufficient for computational accuracy. There should be at least 

two pipes in the system. 

A,- Precipitation rate i is calculated from an equation o f  the form 

B i = A/(B + t ) where td is the storm duration and B is a regional 

constant (both in seconds). A is a function of storm return period 
and catchment location and its units are in m if SI units.are used, 

and ft if ft-lb-sec units are used. 

d 

E - Pipe roughness. This is analogous to the Nikuradse roughness and 

E is measured in m o r  ft. It is assumed in the program that all 
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pipes have the same roughness. A conservative figure of at least 

0.001 m (0.003 ft) is suggested to account for surface deteriora- 

tion with time due to erosion, corrosion or deposits. 

IN,-For each pipe sizing computation various storm durations are in- 

IR vestigated, ranging from IUI up to I U 2  in steps of IR (all in 

seconds). The smallest storm duration IU1 is set equal to the over- 

land flow time for an upper pipe or the previous pipe design storm 

duration for subsequent pipes down a leg. The number of storm dura- 

tions investigated is specified by IN and the increment in trial 

storm duration is specified by IR. Thus IU2 = IUl+IN*II. The 

accuracy of the computations is affected by the number of trial 

storm durations. A value of IN between 3 and 10 is usually- satis- 

factory. The upper limit can be estimated beforehand from experiencc 

or by trial (if all design storm durations turn out to be less than 

the IU2 specified then the IN selected is satisfactory ) .  

I1 -The computational time and cost is affected by the time increment 

of computations I1 (seconds). The maximum possible value is de- 

pendent on the numerical stability of the computations. A value 

equal to the minimum value of 

will normally be satisfactory (of the order of 60 to 300 seconds). 

G - Gravitational acceleration (9.8 in SI units and 32.2 in ft - sec 
units). 

The pipe data is next read in line by line for M pipes. As the program 

stands, 98 individual pipes are permitted, and any number of legs sub- 

ject to the maximum number of pipes. 

X ( 1 )  The pipe length in metres or ft, whichever units are used. An 

upper limit on individual pipes of 200 m is suggested for com- 

putational accuracy and a lower limit of 10 m for optimizing 

computer time. 

S(1) The slope of that pipe in m per m or ft per ft. 

Z ( 1 )  The surface area contributing runoff to the pipe in m2 or ft2. 

C ( 1 )  The proportion of precipitation which runs off (analogous to the 

1 C' in the Rational formula). 

SO(1) The overland slope of the contributing area, towards the inlet 

at the head of the pipe. 

E O ( 1 )  The equivalent roughness of the overland area in m or ft depend- 

ing on units employed. 
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IB(1) The number of the pipe which is a branch into the head of pipe 

1. 

For no branch, put IB(1) = 0 

For a header pipe at the top of a leg, put IB(1) = - 1 .  

Only one branch pipe per inlet is permitted. 

More must be accommodated by inserting short dummy pipes between. 

The order in which pipes are tabulated should be obtained as 

follows: 

After drawing out a plan of the catchment with each pipe, mark the 

longest leg possible starting from the outfall, then successively 

shorter legs on first the longest, then successively shorter pipes. 

Now number the pipes in the reverse order, starting at the top of the 

shortest leg of the shortest leg of the shortest leg, etc. Proceed 

down each leg with the numbering until a junction is reached. Never pro- 

this way 

cu 1 ate d 

ceed past a branch which has not been tabulated 

all pipes leading into a pipe will have had the 

before the next lower pipe is designed. 

previously. I n  

r diameters ca 

S a m p l e  i n p u t  

The 

8 
1 0 0  
150 
200 
100 
100 
200 
200 
100 

data are in metres here and are taken from Fig. 5.13. 

.075 1440 . 0 0 1  3 300 60 9.8 

.002 20000 . 4  .005 . O 1  - 1  

.004 20000 . 4  . 0 0 3  . O 1  - 1  

. 0 0 4  40000 . 4  . 0 0 3  .O1 1 

.002 10000 . 3  .005 . 0 2  - 1  

.004 4 0 0 0 0  . 4  . 0 0 3  . O 1  - 1  

.004 1 0 0 0 0  .5 .005 . 0 1  4 

. 0 0 2  40000 .4 .002 . 0 1  0 

.005 20000 .4 . 0 0 3  . O 1  3 

S y m b o l s  i n  c o m p u t e r  p r o g r a m  

Rainfall parameter in the equation: 
Precipitation rate = A/(B + IU). Metres or feet. 
1nt.ermediate calculation variable (no significance). 
AT(I)/2 
Angle subtended at base of pipe by water surface. Radians. 
Time constant in the equation: Precipitation rate = A / ( B + I U ) .  
Seconds. 
Proportion of rain which runs off subcatchment I. 
Diameter of pipe I. Metres or feet. 
Equivalent roughness of pipes. Metres or feet. 
Equivalent roughness of subcatchment surface I. Metres or feet. 
Gravitational acceleration 9.8 m/s2 or 32.2 ft/sec2. 
Pipe number. 
Feeder pipe 1 for pipe I. 
Branch pipe 2 for pipe I. If IB =- 1 ,  pipe I is a header. 
Number of steps in rainfall duration. 



Increment in time between iterations. Seconds. 
I t e ra t ion nunibe r . 
Increment in storm duration. Seconds. 
Stormduration. Seconds 
Lower limit on storm duration. Seconds 
Upper limit on storm duration. Seconds 
Concentration time for overland flow. Seconds 
Iteration number for overland flow calculation 
Number of pipes 
M -  1 
Pipe number when iterating successive pipe diameters. 
Inflow to sewer from subcatchment. 
P(1) = Z(I)*C(I)*A/(B + IU). m3/s or fts/sec. 
Excess rain rate from subcatchment. m/s or ft/sec. 
Inflow rate from subcatchment. m 3 / s  or ft3/s. 
Flow rate in pipe. m3/s or ft3/s. 
Overland flow per unit width of subcatchment. m2/s or ftZ/s. 
Intermediate calculation variable. 
Flow rate in pipe for previous time interval. m3/s or ft3/s. 
Design flow in pipe. m3/s or fts/s. 
Intermediate calculation parameters. 
Slope of pipe. m/m or ft/ft. 
Ground slope of subcatchment. m/m or ft/ft. 
Design storm duration. Seconds. 
Length of p i p e .  m or ft. 
Area of subcatchment. m2 or ft'. 
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Computer  p r o g r a m  f o r  s i z i n g  s t o r m  d r a i n s  i n  a network 

L.OOO1 
L .a002 
L . 0 0 0 3  
L . 0 0 0 4  c. 
L . 0 0 0 5  10 
L . 0 0 0 6  
L . 0 0 0 7  
L . 0 0 0 8  
L . 0 0 0 9  
L.0010 
L.0011 
1 . 0 0 1 2  12 
L . 0 0 1 3  
L.0514 
L .0015  13 
~ . 0 0 1 6  1 5  
1 . 0 0 1 7  
L.0016 
L . 0 0 1 9  
L .0520 
L . 0 0 2 1  
L .0022  
L . 3 0 2 3  
L . J J i 4  
i.3025 20 
L . 0 0 2 0  
1.01127 
L . 3 0 2 d  
L . O U i Y  
L.0030 
L.J331 '25 
L . U O 3 2  
L.11323 
L.00 '9 
1 .UUIJ 
L.JU16 
L . J J . 3 7  
L . 0 0 3 d  
1 . 3 3 9  
L . O J 4 0  
L . 0 0 4 1  
L . J l J 4 L  J U  
L . 1 1 0 4 3  

1 . ~ ~ 4 7  
L . 3 d U d  J 2  
c .'.I049 
L . J 3 z J  J3 
c . 3 0 5 1  i o  
1 .I352 93 
L . 3 0 5 3  5 u  
L . 3 0 5 4  

L . J J t l  
L . S O 0 2  
L a J J t 3  
L . 0 0 6 4  201) 
L .0365  
L.0066 
L . 0 0 6 7  
L . O U f . H  
L . 6 0 6 F  2 9 5  
L.JO70 300 
L.0071 
L a 0 0 7 2  350 
L . 0 0 7 3  
L.UO74 b O  
L . 0 0 7 5  
L.JJ76 9 0 0  
L . 0 0 7 7  79 
L.UU78 

L . J J O 1  
L . 0 0 0 2  
c.0303 
I .1)03* 
L .JJU,  
L . 3 3 0 6  

L . U O 0 d  
i . 0 3 3 r  
I . .  3J 10 
L.OJ11 

L . O U O ~  

G f l  T J  15 
I A I  1 ) =  1-1 
CON1 l h U E  
c 1 9 9  ) = a .  
O P  ( 9 9  ) =  0. 
CPC 1 1 = a .  
MI=M-I 

bJOI(M SEWER CESlGN 
GlPE L E P l G T H  C l A  GRADE D S F L C / S  S I O H M  S A R E A  

1 100. -576 - 0 0 2 0  d 4 4  10lh. 20000. 
2 150. .5lU .004C .,55 Yll. 20000. 

4 
5 
6 
7 
e 

D A T A  

200. -643 - 0 0 4 0  
100. -415 . 0 0 2 0  
100. . 5 7 4  - 0 0 4 0  
2 0 0 .  .el., .0040 
2co. -253 .a320 
100. .GO5 . O O S O  
e .075iu40..0010 

-462 206e. 
-102 7 7 2 .  
.J42 2 0 o d .  
.+17 2 d 6 8 .  . ~~ 

.G'?h 1Ob8. 
1.387 2U60. 

296.3 305 60 

40000. 
10000. 
40000. 
10000. 
40000. 
20000. 




