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CHAPTER 10 

FLOW I N  CIRCULAR DRAINS 

ADVANTAGES OF P I P E S  

Pipes are in many ways a very convenient means of removing stormwater. 

They ire buried so that they are unobtrusive, they are structurally 

strong, and the hydraulic properties of circular pipes are favourable ~ 

in comparison with other types of closed conduits. 

In regions sewered many years ago and where storm runoff is relatively' 
I 

low, wastewaters and storm drainage are transported in the same pipes. 

In those situations closed conduits were essential for health. This is 

not always done nowadays, although surplus capacity is often allowed 

in sewers for stormwater which may enter the system at gulleys or leaking 

manholes or joints. Waste sewers are rarely designed to run full, where- 

as stormwater drains are. The hydraulic grade line ideally runs along 

the soffit of stormwater drains at design flow so that manholes are not 

surcharged. 

Although the design of pressure pipes is beyond the scope of this 

section, basic principles of hydraulics of circular pipes are presented 

together with some design rules. 

HEAD LOSS IN FULL PIPES 

The energy of a flowing fluid expressed per unit weight of fluid, is 

termed the head. It comprises elevation head, pressure head and velo- 

city head. In accordance with Bernoullis's equation for an ideal fluid 

the total energy at one section is equal to that at another section: 

( 1 0 . 1 )  

where v = mean velocity across a section 

- velocity head (units of length) V 2  

2g 
g = gravitational acceleration 

1) = pressure 

p/w= pressure head (units of length) 

w = unit weight of fluid 

z = elevation above selected datum 

- _  

11' there occurs head loss due to friction and turbulence between sec- 

tions 1 and 2, then the term hf (head loss) should be added to the 
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right hand side of (10.1). Strictly the velocity head should be multi- 

plied by a coefficient to account for the variation in velocity across 

the section of the conduit. The average value of the coefficient far 

turbulent flow is 1.06 and for laminar flow it is 2.0. For the Bernoulli 

equation to apply the flow should be steady, i.e. there should be no 

change in velocity with time at any point. The flow is assumed to be 

one-dimensional and irrotational and the fluid should be incompressible. 

The respective total energy head and hydraulic grade line are illus- 

trated in Fig. 10.1 (Stephenson, 1979). For most practical cases the 

velocity head is small compared with the other components, and it may 

be neglected. 

I / - E N E R G Y  LINE 

E N T R A N C E  LOSS 

F R l C l W N  LOSS 
C U ! I l R A C l I O N  L O S S  

F R I C T I O N  LOSS 

Fig. 10.1 Heads along a pipeline 

The throughput or  capacity of a pipe of fixed dimensions is controlled 

by the total head difference between the ends. This head is consumed by 

friction and other turbulence losses. The losses at bends, junctions, 

changes in diameter and a t  manholes (sudden expansions) are usually 

less than the friction loss. Gravity or free flowing pipelines are laid 

to the friction gradient, with additional allowances at changes in 

section. The head loss at such a section is a fraction of the velocity 

head ; 

hL = K1vIZ/2g 

where K, = (1 - A1/A,l2 

for a sudden expansion from area A1 to A,. 

(12.21 

(10.3) 
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'I'AH1,E 1 0 . 1  Nikuradse Roughness for Pipe Materials 

Value of k in mm for new, clean surface unless otherwise stated 

Finish: Smooth Average Rough 

Glass ,  drawn metals 0 
Steel, PVC or A C 0 . 0 1 5  
Coated steel 0 . 0 3  
Galvanized, vitrified clay 0 . 0 6  
Cast iron or cement lined 0 . 1 5  
Spun concrete or wood stave 0.3 
Riveted steel 1 . 5  
Foul sewers, tuberculated water mains 6 
Unlined rock, earth 6 0  

0 . 0 0 3  0 . 0 0 6  
0 . 0 3  0 . 0 6  
0 . 0 6  0 . 1 5  
0 . 1 5  0 . 3  
0 . 3  0 . 6  
0 . 6  1 . 5  

3 6 
1 5  3 0  

1 5 0  3 0 0  

TA131,B 10.2 Hazen-Williams Friction Coefficients C 

Type of Pipe Condition 
New 25 years 50 years Badly corroded 

old old 

rvc 1 5 0  1 4 0  1 4 0  1 3 0  
Smooth concrete, AC 1 5 0  1 3 0  1 2 0  1 0 0  
Steel, h i  tumen 1 ined 
galvanized 1 5 0  130 1 0 0  6 0  
Cast iron 1 3 0  1 1 0  90 5 0  
Riveted steel 
vitrified, woodstave 1 2 0  80 45 
- ____ 

FRlCrION LQUATIONS 

Darcy-Weisbach  e q u a t i o n  

A number of empirical relationships for friction head loss in terms 

o€ pipe diameter and discharge were developed for specific use in water 

works practice. These equations (such as that of Hazen-Williams) were 

applicable within their sphere of development but cannot be extrapolated 

heedlessly. Following research by Reynolds, van Karman and others into 

turbulance, boundary layer theory was developed to yield a flow-head 

loss relationship for a range of flows i n  pipes. The Darcy-Weisbach 

friction equation is one equation resulting from this research: 

( 1 0 . 4 )  
2 s = Av / 2 g u  

This equation together with the associated Moody diagram (Fig. 1 0 . 2 )  

or the Colebrook-White equation for the friction factor A (or f in USA 

practice) is slowly gaining acceptance as the most rational method for 

estimating friction head losses in pipes. S is the head loss gradient, 

and D is the pipe internal diameter. For non-circular conduits or partly 



1
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N
 Fig. 10.2 F r i c t i o n  factors as a function of Reynolds number and relative roughness 
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full conduits D may be replaced by 4R, where R is the hydraulic radius 

A/P, A is the cross-sectional area of flow and P is the wetted perimeter 
The Darcy friction factor is yielded by the Colebrook-White equation 

( 1 9 3 9 ) :  

( 1 0 . 5 )  

In view of the complicated relationship between the Darcy friction 

factor h,Reynolds number Reand the relative roughness k / D ,  explicit head 

loss charts have been prepared (Ackers, 1 9 6 9 ;  Watson,  1 9 7 9 ) .  Such a 

chart is given as Fig. 10.3. k is a measure of the boundary roughness, 

termed the Nikuradse roughness (see Table 1 0 . 1 ) .  The Reynolds number 

is Re = vD/v or 4vR/v for part-full pipes 

where v is the kinematic viscosity of the fluid 
( 1 0 . 6 )  

Hazen-Williams equation 

Despite its sound background and apparent simplicity the Darcy-Weisbach 

equation does not directly yield discharge rate for any given pipe and 

head loss gradient except in the turbulent rough zone of the Moody dia- 

gram. Equations such as that of Hazen-Williams and Manning remain in 

use because they can be solved directly for discharge rate. The bounds 

of applicability of these equations requires clarification. The equation: 

also appear in specific units, and a dimensionless rendering would be 

welcome. Diskin (1960) presented a useful comparison of the friction 

factors from the Hazen-Williams and Darcy Equations. 

The Hazen-Williams equation is widely used in water engineering prac- 

tice. The equation is 

( 7 0 . 7 )  v=KwCwD 0 . 6 3 s 0 .  54 

where Kw is 0.354 in metre units and 0.550 in foot units. Cw is the 

Hazen-Williams coefficient (see Table 10.2). The Hazen-Williams equation 

may be rewritten in the following dimensionless form: 

( 1 0 . 8 )  0 . 0 7 5 7  
gDS v = 0.044 Cw (Re/Cw) 

The Hazen-Williams coefficient Cw is a function of X and Re and values 
may be plotted on a Moody diagram (see Fig. 10.2). It will be observed 

from Fig. 1 0 . 2  that lines for constant Hazen-Williams coefficient coin- 

cide with the Colebrook-White lines only in the transition zone. In the 

completely turbulent zone for non-smooth pipes the coefficient will 

actually reduce the greater the Reynolds number. The Hazen-Williams 

equation should therefore be used with caution for high Reynolds num- 

bers and rough pipes. 



171 

F i g .  1 0 . 3  F r i c t i o n  l o s s  c h a r t  f o r  p i p e s  f l o w i n g  f u l l ,  k = 0 . 3  mm 
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Manning equation 

The Manning equation is widely used for head losses in open channel 

flow calculations and for part full pipes. 

The equation is 

v = --R Kn 2 / 3 s  1b (10.9) N 
where Kn i s  1.0 in S.I. (metre) units and 1.486 in ft units. 

coefficient N and the effective size of boundary roughness k: 

Strickler proposed the following relationship between the Manning 

N = 0.13 Kn k U 6 / &  

thus v = 7.7 ( R / k )  1/6m (all units) ( 1  0. ? 2) 

(10.111 

i.e. the Manning coefficient depends only on the boundary roughness, k .  

The Manning equation i s  therefore only applicable to turbulent flow 

with a rough boundary. It i s  however easier to use than the Darcy 

equation and has thus retained popularity despite its limitations. 

Typical values of N are given in Table 10.3 and a relationship between 

N and k is given in Table 10.4. In fact Strickler's equation is analo- 

gous to the Darcy equation with a simpler 1/6th power equation for h 

instead of the Colebrook-White log equation. 

TABLE 10.3 Manning's N 

Smooth glass 0.010 
Concrete, galvanized or lined steel 0.011 
Cast iron 0.012 
Slimy or greasy sewers 0.013 

Rough concrete 0.018 

TABLE 10.4 Relationship between Manning Coefficient N and roughness k .  

Rivetted steel, vitrified 0.015 

-_____ 

(n = 0.13Knk1/6 / 6)  
- 

N k (m) k(ft) 
0.01 0.0002 0.0006 
0.012 0.0006 0.0019 
0 . 0 1 5  0.0022 0.0072 
0.02 0.012 0.039 
0.025 0.048 0.156 
0.03 0.142 0.466 
0.04 0.80 2.625 
0.05 3.05 10.00 

~ _ _ _ ~ ~  

NON-CIRCULAR CROSS SECTIONS 

A circular pipe is normally the most economic if it is to be designed 
to resist internal pressures. A circular shape has the shortest circum- 

ference p e r  unit of cross sectional area, consequently it requires 

least wall material, as well as being easy to manufacture. 
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Ellipical or horseshoe shapes are often adopted for sewers or drains. 

They have different strength and hydraulic characteristics to circular 

pipes. Vertical elliptical pipes (major axis vertical) have smaller 

wetted perimeters when running partly full with low flows, consequently 

the velocity is higher than for a circular pipe, which assists in flush- 

ing. The vertical load on a vertical elliptical pipe is less than on 

a circular pipe with the same cross sectional area, and the strength 

is greater because the curvature is sharper at the top. 

llorizontal elliptical pipes (major axis horizontal) are sometimes 

used where vertical loads are low or clearance is limited. Running 

partly full they will discharge relatively high flows at small depths 

of [low which may be an advantage if head is limited. 

Arch shapes with flat bottoms have similar hydraulic characteristics 

to horizontal elliptical shapes for low flow under partly full con- 

ditions. The arch shape is usually the most practical shape in tunnell- 

ing. 

Provided the cross-sectional shape does not differ much from circular 

i.e. it could be elliptical or even rectangular, the Darcy equation is 

applicable. 4R is substituted for D in the equation and in the Reynolds 

number. 

UN1I:ORM I:LOW IN PART-FULL CIRCULAR PIPES 

Most friction Cormulae for full pipe flow have been used for part- 

full flow. For a circular pipe of diameter D running at depth y, the 

cross-sectional area of flow is: 

D 2  - 1  D A = - cos 4 
- 

( 1 0 . 1 3 )  (1-3) - (z - y) JyD - y 2  

'The wetted perimeter is: 

P = I) cos 2Y (10.14) - 1  
( 1 -  r) 

Using these equations charts may be prepared yielding a dimensionless 

relationship between flow depth and cross sectional area and hydraulic 

radius as a proportion of the full depth value, i.e. A/Af and R/Rf 

versus y/D, as given as Fig. 70.4. , 

Also indicated on the chart are lines indicating the velocity ratio 

v / v f  and the discharge ratio Q/Q 

uniform flow the ratio of friction gradient S / S  versus y/D is indicated 

assuming Q/Qf=l. 

loss equation. If Manning's equation is used with roughness N indepen- 
dent of depth, then the resulting relationships are as indicated. In 

versus y/D for uniform flow. For non- f 

f 
These lines are dependent on the assumed friction 



Y l  

- F i g . l O . 4 :  H y d r a u l i c  p r o p e r t i e s  o f  p art ly  
full c . i r c u l a r  d r a i n s  ( c o n s t a n t  n )  
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fact if Strickler's approximation €or N i s  used, then N is independent 

oS flow depth and dependent only on boundary roughness. If the Darcy- 

Weisbach equation is adopted, then assuming a constant friction factor 

A i.e. independent of depth of flow, similar relationships could be 

plotted. The friction factor A is known to vary with Reynolds number 

though, especially for shallow depths and correspondingly low Reynolds 

numbers. In such cases the relationships between v/vf, Q/Q, and y/D are 

not unique unless a varying X is used i.e. A i s  a function of two varia- 

bles, k / K  and Reynolds number, so a different line will apply for each 

case. 

Camp ( 1 ' 3 4 6 )  performed tests to determine the variation of N and A 

with depth. His charts are presented by ASCE (1969), but it should be 

borne in mind those relationships are not completely in accordance with 

the Colebrook-White equation for the reasons indicated a b o v e .  

Using Figs. 10.3 and 10.4, given any three of the five variables 

(1, I ) ,  S, v and y, the other two may be determined. The flow conditions 

f o r  full- bore flow (y/D = 1) are yielded simultaneously.Designate Qf = 

flow at full bore and vf = velocity at full bore. Now assume the flow, 

pipe diameter and slope (Q, Ll and S) are known, and y/D and v are to 

be determined. Read Qf and v f  from Fig. 10.3 and using the ratio Q/Qf, 

read y/D from Fig. 10.4. Hence also read v / v f  from Fig. 10.4 and cal- 

culate v knowing v f' 
As another example, given Q = 50 e / s ,  S = 0.0005 and y/D = 0.25, find 

the necessary diameter D and corresponding velocity: From Fig. 10.4, 

Q/Q, = 0.135 s o  Qf = 370 e / s  and from Fig. 

m/s. Now from Fig. 

10.3 D = 525 mm and vf = 1.7 

1 0 . 4 ,  v / v f  = 0.7 hence v =1.2 m/s. 

An interesting fact is illustrated in Fig. 10.4. The flow for a partly 

full pipe is greater than the flow through a fully charged pipe if the 

depth of flow is between 82% and 100% of the diameter. The reason for 

this is that the wetter perimeter increases rapidly but the area does 

not, as the pipe fills up over the last portion. The additional capacity 

shculd not be relied upon however a s  the slightest irregularity may 

cause the pipe to run full. 

CRITICAL DEPTH AND HYDRAULIC JUMPS IN PIPES 

Bernoulli's energy equation applies to the flow in circular drains 

running full or part full. Thus for no friction or energy losses, 

z + y + 1' = constant (10.15) 

or 

z + y + Q2/ZgA2 = constant (10.16) 

2g 
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where z is bed elevation, y is water depth and v is mean velocity. In 

accordance with this equation, the specific energy is a minimum at some 

depth yc termed the critical depth. It is derived in implicit form by 

differentiating the energy equation with respect to depth and setting 

the differential equal to zero. Then 

Q, = (gAC3/BC)ln (1 0.17) 

o r  in dimensionless numbers 

(10.18) 

Both area A and surface width B are functions of flow depth y .  Thus 
- 1  

A/D’ = + cos (1-2y/D) - ($-y/D) (Y/D-Y~/D~)”~ (10.19) 

and B/D = 2(y/D-y2/DZ)1‘2 (10.20) 

TABLE 10.5 Flows for Varying Values 05 Critical Depth in Circular 
Channe 1 s 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .OO 

0.0000 
0.0147 
0.0409 
0.0739 
0.1118 
0.1535 
0.1982 
0.2450 
0.2934 
0.3428 
0.3927 
0.4426 
0.4920 
0.5404 
0.5872 
0.6318 
0.6736 
0.7115 
0.7445 
0.7707 
0.7854 

0.0000 
0.4359 
0.6000 
0.7141 
0.8000 
0.8660 
0.9165 
0.9539 
0.9798 
0.9950 
1.0000 
0.9950 
0.9798 
0.9539 
0.9165 
0.8660 
0.8000 
0.7141 
0.6000 
0.4359 
0.0000 

0 0.000 
0.017 2.699 x lo5 
0.039 10.68 .. 
0.061 23.77 .* 

0.082 41 .80 
0.103 64.64 .. 
0.122 92.18 .. 
0.146 124.16 .. 
0.168 160.55 .. 
0.190 201.18 .. 
0.212 246.11 .. 
0.236 295.17 .. 
0.260 348.63 .. 
0.284 406.76 .. 
0.310 470.00 .. 
0.336 539.68 .. 
0.364 618.09 * *  

0.393 710.22 
0.424 829.29 * .  -3 

0.459 1001.8 x 10 
0.500 cn 

Employing these relationships values of A/D2, B/D and the corres- 

ponding value of QC/(gD5)l” are given in Table 10.5 as functions of 

Diskin (1958 and 1962) indicates that the following experimental 

y/D - 

equation fits the relationship between yc/D and Q/(gD5)l” for y/D 

between 0.05 and 0.85 
yc/D= 1 .05Q/ (gD’) v2 1 (1 0.21) 
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The minimum specific energy corresponding to critical depth is 

(Jenker, 1962) 

H . = Yc+Ac/2Bc (1 0.22) m m  
This may be evaluated from the functions of A/D2 and B/D versus y/D 

previously tabulated. In general whether the depth is critical 

the relationship between depth and specific energy can be plot 

non-dimensional form (Fig. 10.51, from 

- - -  E - Y + Q2/gD5 
D D 2(A/D2)2 

or not, 

ed in 

0.23) 

It should be noted that for high specific energy the pipe may be 

surcharged in the subcritical condition in which case the term y/D re- 

presents the depth plus pressure head. In this case the lines above 

y / D  = 1 in Fig. 1 0 . 5  extend at 45 degrees above the soffit of the pipe. 

The specific momentum of the flow may likewise be evaluated in dimen- 

sionless terms. The total momentum per unit weight of water is 

M = - Q 2  + Ay 

or in dimensionless terms 

- 
(10.24) 

gA 

( 1  0.25) 

where 7 is the depth from the top water surface to the centroid of the 
section. r/D as a function of y/D was evaluated numerically and is give 
in 'Table 10.5. It may be shown (Henderson, 1966, p 84) that 

- D 3  0 0 0 
2 2 2 2 30 3 - cos -1 Ay = ( 3  sin - - sin - - (10.26) 

where cos 0 = 1 -2y/D ( 1  0.27) 

'The dimensionless specific momentum function is plotted in Fig. 10.6. 

In many cases the sequent depth should exceed the diameter of the con- 

duit. In this case the conduit will run full and pressurized. The cor- 

responding specific momentum is 

( 1  0.28) 

where 7 is the pressure head above the centre-line of the conduit. A 
limited range of values is plotted in Fig. 10.6. 

A hydraulic jump in a conduit can entrain air which causes additional 

complications. The air is likely to be released from solution and small 

bubbles will rise to the top of the pipe, creating a part-full pressu- 

rized flow situation. Whether the air is in the form of bubbles or a 

pocket along the soffit of the conduit, the head losses will be higher 

than for pure water flowing at the specified rate. The volume occupied 

by entrapped air can be as great as 25% for low pressure systems 

(Mussalli, 1978). 
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The rate of air entrainment of a free hydraulic jump in a rectangular 

channel was determined from model experiments by Kalinske and Robertson 

(1943). Recent tests on jumps in pipes indicate this equation under- 

predicts the air entrainment rate. An equation of the following form 

i s  indicated 

Q,/Q, = 0.03 (F-1) (10.29) 

where Q, i s  the volumetric air entrainment rate and F is the upstream 

Froude number (QzB/gA3)V’ . Wisner et a1 (1975) also advocate the 
removal of air by hydraulic means. 

The total volume of discharge immediately downstream of the jump be- 

fore the air has had time to dissolve, 

friction loss is a function oE this total flow. Air may subsequently 

be released at manholes in gravity lines or by air valves in pressure 

lines. In fact air i s  a nuisance in many cases as it results in head 

losses which restrict the capacity of the pipe. 

is therefore Q + Q, and the 

Fig. 10.7 Circular pipe p a r t  f u l l  
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FLOOI) ROU'I 'ING 

A l t h o u g h  t h e  k i n e m a t i c  m e t h o d  o f  r o u t i n g ,  i g n o r i n g  d y n a m i c  terms,  is 

s u f f i c i e n t l y  a c c u r a t e  f o r  m o s t  d r a i n s  ( S t e p h e n s o n ,  1 9 8 0 ) ,  f o r  l a r g e  

d r a i n s  t h e  f u l l  h y d r o d y n a m i c  e q u a t i o n s  c a n  b e  e m p l o y e d  f o r  g r e a t e r  

a c c u r a c y .  Harris ( 1 9 7 0 )  f o u n d  t h e  c h a r a c t e r i s t i c  m e t h o d  e x p e n s i v e  on  

c o m p u t e r  t ime a n d  p r e f e r r e d  a p r o g r e s s i v e  a v e r a g e  l a g  m e t h o d .  I n  many 

c a s e s  t h e  k i n e m a t i c  e q u a t i o n s  e n a b l e  r o u t i n g  to b e  p e r f o r m e d  e a s i l y .  

The c r o s s  s e c t i o n a l  a r e a  o f  f l o w  i n  a c i r c u l a r  c o n d u i t  r u n n i n g  p a r t  

f u l l  ( s e e  F i g .  1 0 . 7 )  may b e  w r i t t e n  a s  

A = 4 
u a n d  1) = ]Iz 

Thus if we t a k e  t h e  a n g l e  0 s u b t e n d e d  a t  t h e  c e n t r e  a s  t h e  v a r i a b l e  t h e  

con t i n  u i t y e q u a  t i o n  become s 

( 1 0 . 3 0 )  

( 1 0 . 3 1 )  

112 0 0 e (7 - cos-  sin-) 2 2 

9 ( 1 0 . 3 2 )  

where  q is t h e  i n f l o w  p e r  u n i t  l e n g t h  a n d  Q is t h e  t o t a l  f l o w  r a t e  i n  

t h e  p i p e .  ' I 'h is  may be s o l v e d  f o r  e 2  a f t e r  a t i m e  i n t e r v a l  A t  i n  f i n i t e  

d i f f e r e n c e  f o r m  

( 1  0 . 3 3 )  

a n d  i n  t e r m s  o f  t h e  new 8, u s i n g  t h e  S t r i c k l e r  a p p r o x i m a t i o n  f o r  f r i c -  

t i o n  l o s s e s ,  21 3 A 0 

( 1 0 . 3 3 )  a n d  ( 1 0 . 3 4 )  a r e  s o l v e d  s u c c e s s i v e l y  a t  d i f f e r e n t  p o i n t s  a l o n g  

t h e  d r a i n  a t  s u c c e s s i v e  t ime  i n t e r v a l s  t o  y i e l d  a h i s t o r y  o f  Q v e r s u s  

x a n d  t .  

A p p r'ox i m a t c Me t hod 

The f o l l o w i n g  a s s u m p t i o n s  may o f t e n  b e  made i n  t h e  case o f  a s l u g  o f  

w a t e r  r e l e a s e d  i n t o  a d r a i n  ( S t e p h e n s o n ,  1 9 7 7 ) .  

1 .  'There is n o  b a s e  f l o w  i n  t h e  d r a i n .  

2 .  A volume o f  w a t e r  U, i . e .  a ' s l u g '  is i n j e c t e d  i n t o  t h e  d r a i n  o v e r  

a l e n g t h  I, ,  a t  u n i f o r m  d e p t h  y .  The c r o s s - s e c t i o n a l  a rea  o f  f l o w  is 

a p p r o x i m a t e l y  2 / 3  yB ( w h i c h  is n o t  a c c u r a t e  u n l e s s  y is s m a l l ) ,  w h e r e  

B i s  t h e  s u r f a c e  w i d t h .  

3 .  The volume o f  water  t r a v e l s  down t h e  d r a i n  a t  a n  a v e r a g e  v e l o c i t y  v 

w h e r e  X is t h e  D a r c y  f r i c t i o n  f a c t o r ,  R i s  t h e  h y d r a u l i c  r a d i u s  a n d  

S i s  t h e  b e d s l o p e .  
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( I n t e r v a l s  100-200m)  

round l i n e  

s u P e r -\\ . 

0.005 

Fig. 10.9 Storm drain profile (vertically exaggerated) 

4. The extremities of the volume of water U are travelling outwards 

relative to the average velocity b’y the celerity c = e ,  i.e. the 

two ends of the water are travelling at v-c and V+C respectively 

down the pipe. 

5. The depth of water remains uniform over the length. 

Then employing the continuity equation and an approximation for area 

of flow it may be shown 

(1 0 . 3 5 )  

(10.35) was solved in steps to yield a relationship between y and x as 

shown in Fig. 10.8. This chart represents the attenuation in depth of 

the surge as it trave1.s down the drain. The chart albeit only an appro- 

ximation will be satisfactory as a design aid for many problems e.g. 

the estimation of the attenuation of flow in stormwater drains after 

high intensity, short duration storms. Thus by routing a storm down 

a drain it will reduce in intensity, enabling drain sizes to be mini- 

mized. It is not suggested that the drain diameter be reduced along 

the length, as the storm could presumably occur anywhere along its 

length. However, in summating inputs along the length, the inputs from 

higher u p  in the catchment could be suitably routed using the chart so 

that the total capacity is less than the sum of the inputs. It may also 

b e  employed to estimate the amount of water needed to flush a sewer 

(Watson, 1937). 
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To e s t i m a t e  t h e  i n i t i a l  f l o w  d e p t h  o f  a n y  i n p u t  i f  t h e  d u r a t i o n  a n d  

t o t a l  i n f l o w  a r e  known o n e  may u s e  t h e  a p p r o x i m a t i o n  

f o r  y < < d ,  y f ) 1/4 
( 1  OgDSt* 

BACKWATERING AND GRADUALLY VARIED FLOW 

( 1 0 . 3 6 )  

The c o m p u t a t i o n  o f  b a c k w a t e r  s u r f a c e  p r o f i l e s  i n  c i r c u l a r  c h a n n e l s  

c a n  b e  d o n e  by t h e  s t a n d a r d  s t e p  m e t h o d  ( H e n d e r s o n ,  1 9 6 6 ) .  N a l l u r i  and 

T o m l i n s o n  ( 1 9 7 8 )  p r e s e n t e d  a d i r e c t  s t e p  m e t h o d  n e c e s s i t a t i n g  t h e  u s e  

o f  t a b l e s .  

B a c k w a t e r i n g  i s  e a s i l y  e x e c u t e d  by  h a n d  w i t h  t h e  a s s i s t a n c e  

s u c h  a s  F i g .  1 0 . 4  d e p i c t i n g  p r o p o r t i o n a l  a r e a  o f  f l o w ,  h y d r a u  

a n d  e n e r g y  g r a d i e n t .  

o f  a graph 

i c  r a d i u s  

PROGRAM F O R  BACKWATERING IN PART-FULL PIPES 

U s i n g  t h e  e q u a t i o n s  f o r  t h e  g e o m e t r i c  p r o p e r t i e s  f o r  p a r t l y  f u l l  c i r -  

c u l a r  p i p e s  o n e  i s  a b l e  t o  b a c k w a t e r  i n  a c i r c u l a r  p i p e .  I t  is a s i m p l e  

m a t t e r  t o  p r o g r a m  t h e  e q u a t i o n s .  S u c h  a p r o g r a m  i s  a p p e n d e d .  

The f r i c t i o n  e q u a t i o n  e m p l o y e d  i n  t h e  p r o g r a m  i s  t h a t  o f  M a n n i n g ,  

w i t h  a c o n s t a n t  ’ N ’  v a l u e .  The Manning f r i c t i o n  e q u a t i o n  is r e n d e r e d  

i n d e p e n d e n t  o f  w h e t h e r . m e t r e s  o r  f e e t  a r e  u s e d  by  e x p r e s s i n g  i t  a s  

v = g U 3  R2’3 S 1 ” / 2 . 1 4 N  ( 1  0 . 3 7 )  

D a t a  i s  r e a d  i n  v i a  d e v i c e  9 ( s e e  l i n e s  3 a n d  6 i n  t h e  F r o g  

F r e e  f o r m a t  i s  u s e d  a n d  d a t a  i s  r e a d  i n  t h e  f o l l o w i n g  o r d e r :  

First line : N ,  Q, D ,  C ,  C;, Y ( 1 ) ,  E 

S e c o n d  a n d  subsequent Z i n e s  : (N s u c h  l i n e s ) :  Z(M), X(M), T(M 

w h e r e  N = number of- c r o s s  s e c t i o n s  c o n s i d e r e d  

Q = f l o w  r a t e  

1) = p i p e  d i a m e t e r  

C = M a n n i n g ‘ s  c o e f f i c i e n t  

G = g r a v i t a t i o n a l  a c c e l e r a t i o n  

Y = w a t e r  d e p t h  a t  s e c t i o n  1 .  

1.: = p e r m i t t e d  e r r o r  i n  d e p t h  d u r i n g  c o m p u t a t i o n s  

a m ) .  

Z(M)= i n v e r t  l e v e l  o f  p i p e  a t  s e c t i o n  M m e a s u r e d  a b o v e  a n y  

X ( b l ) =  d i s t a n c e  t o  n e x t  c r o s s  s e c t i o n .  F o r  t h e  l a s t  p i p e  t h i s  

‘ T ( M )  = t u r b u l e n t  l o s s  c o e f f i c i e n t  i n  t h e  p i p e  i m m e d i a t e l y  b e f o r e  

c o n s t a n t  da tum 

may b e  s e t  a t  z e r o  

t h e  c r o s s  s e c t i o n  M ( A f I  = T V 2 / 2 G )  
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The printout on device 5 (see lines 39, 41 and 44) includes input data 

as well as water levels and velocities at each section. The program 

can be used to backwater upstream in the case of subcritical flow or 

downstream in the case of supercritical flow. In the latter case, pipe 

lengths should be input as negative values. 
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