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8 QUEUING THEORY MODELS 

8.1 KINDS O F  QUEUES 

Queuing theory (the theory of waiting lines) is a discipline of operational research, 
the subjects of which are mathematical models and quantitative analysis of processes 
involving waiting for the service of some technical equipment. Common to all these 
processes are the arrivals of people or objects requiring service and the attendant 
delays when the service mechanism is busy. The aim of the theory is the identification 
of these characteristics of the queue processes that facilitate technical and economic 
analysis of the given system and the attainment of optimal parameters of these 
systems. 

Service mechanism 

- 

> 
I I Queue 

Input I output 
b 

Fig. 8.1 Schematic representation of the queuing process 

The first application of queue theory were to problems in the operation of tele- 
phone and telegraph lines. Now queue theory is applied in various fields, e.g. in the 
organisation of production, design operations, transport, services, maintenance, etc. 

Problems using queue theory have the structure represented in Fig. 8.1. The 
mathematical description in queue models requires specification in this form : 
a mathematical description of the input process, its time dependence, queue disci- 
pline, service mechanism, and the output process resulting from the previous stages. 

According to the given characteristics queue processes and their mathematical 
models can be classified in different ways. Stochastic models with random variables 
are frequently applied in queue theory. 

The queue models are investigated with different input processes, queue discipline 
and service mechanism. Input is characterized by the pattern of arrivals into the 
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system (regular or random patterns), individual or bulk arrivals, etc. A random 
pattern is described by its probability characteristics: a mean number of items 
arriving in a given unit of time, the probability that no unit arrives during a certain 
time interval, the mean number of items in the bulk arrivals, etc. It is important to 
make an analysis of the stationarity or non-stationarity of probability character- 
istics of the input process. 

Queue discipline describes the order in which customers entering the system are 
eventually served. It can have different forms given by the input process and the ways 
of transition from queue to service. In the simplest case, the discipline is first come, 
first served (first in, first out - FIFO). However, some customers may become 
impatient and decide to leave the system before being served (reneging), or a cus- 

Table 8.1 Kendall’s notation of queuing systems 

is substituted for 

X 

Exponentially distributed 
(independent) interarrival 
time, (M = Markovian), 
Poisson input 

Erlangian distribution 
of order n for interarrival 
time (with parameters I 
and n) 

Distribution xz for 
interarrival time 
(with ti degrees of freedom) 

Regular, deterministic 
interarrival time 

General distribution 
of interarrival time 
(no assumption for 
distribution) 

General independent 
distribution 
of interarrival time 

Y 

Exponentially distributed 
service ti me 

Erlangian distribution 
of order n for service 
time (with parameters p 
and n)  

Distribution xz for 
service time 

Constant, deterministic 
service time 

General distribution 
of service time 
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tomer seeing a long line may balk, i.e. not join the queue if it is too long. In more 
complicated cases a different queue discipline may be applied, e.g. last come, first 
served (last in, first out - LIFO) or a priority discipline if certain customers are 
served preferentially. 

Similarly, there can be different types of service systems..Service can be offered 
along one or several parallel lines (servers in parallel), service time can be constant 
(for all customers) or it can be random. The probability characteristics of service 
time are investigated and its probability distribution can be stationary or time 
dependent. 

A concise representation of queue systems was given by Kendall. In his notation, 
the systems are classified according to three main aspects: (1) the type of input 
stochastic process describing the arrival of customers; (2) the distribution of service 
time and (3) the number of servers. Information concerning these characteristics is 
signified by three symbols: X/Y/c ,  where X and Y are specified by capital letters 
and c is a natural number (or 00) denoting the number of servers. For X and Y the 
letters M, D, G, En, K ,  are substituted here (for X the couple GI may be substituted); 
an explanation of these symbols is given in Table 8.1. 

Kendall's classification is not exhaustive, as some important characteristics are 
not included in the symbolic notation ( e g  the existence and length of the queue, 
queue discipline, etc.). Therefore, these data must be added in each case. 

8.2 MARKOVIAN AND OTHER PROCESSES IN QUEUING 
MODELS 

Markovian processes form a separate class of stochastic processes. A number of 
publications deal with this type of process (Walter, 1970; Zitek, 1969; Wagner, 1975) 
and its application to WRS problems (Votruba and Nachazel, 1971). In queue models 
the Markovian properties of processes are very important. The solution is simpler 
if the process is Markovian, or if it can be approximated by a Markovian process. 
In other cases, formidable computational difficulties occur and some sophisticated 
methods are used, e.g. the method of imbedded Markov chains. 

In section 8.2 the relationship between Markovian properties of processes and 
the type of queue model is explained; in section 8.3 the models applicable to WRS 
are analyzed. 

According to Kendall's notation of queue models (section 8.1) e.g. the system 
designated M/M/l has the following features : 
- Poisson input, i.e. exponentially distributed (independent) inter-arrival time 
- exponentially distributed service time, 
- single server. 
Similarly, the system designated M/E,,/l is characterized in the following way : 
- Poisson input (see previous type), 
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- Erlangian distribution of order n for service time (with parameters p and n), 
- single server. 
The theory of Markovian processes can be applied to queue systems with Poisson 

input, i.e. exponentially distributed inter-arrival time and exponentially distributed 
service time. In Kendall’s notation these systems fall into the first row i.e. systems 
designated MIMIn. These systems have been intensively investigated and have been 
applied successfully in practice. Consequently, queue systems are often divided into 
two basic groups: 
- Markovian systems (type M/M/n) ,  
- other systems (non-Markovian, e.g. types M/D/1, M / G / l ,  M/E,, / l ,  G I / M / I ,  

etc.). 

8.2.1 M a r k o v i a n  Q u e u i n g  Sys tems 

System M / M / 1  

The model of this system is the simplest one. It can be described as follows: cus- 
tomers arrive in the system individually, and their arrivals are mutually independent 
and independent of the service mechanism. The inter-arrival time is an independent 
random variable with an identical exponential distribution. The customers who 
cannot be served because the single server is occupied, wait in a single, unlimited 
queue. The queue discipline is first come, first served, without priorities. 

The solution gives the following parameters: the mean number of customers in the 
queue, the mean number of customers in the system, the probability distribution of 
the waiting time of any customer, the mean time spent by a customer in the system, 
the system utilization factor (fraction of the time the server is busy). 

System MIMIn 

When the requirements of customers exceed the capacity of a single server, a system 
with more servers, n > 1, can be used. (However, some other systems are possible, 
e.g. with a higher intensity of the service mechanism or with a reduction in the number 
of customers). 

In the simplest form of this system, a single queue is assumed, common to all 
servers. The customers wait in the queue when all the servers are occupied. When- 
ever a server becomes available, the customer at the head of the queue is served. 
The solution of problems of this system is similar to that in the M / M / l  system. 
Special problems occur if the solution is to determine the number of servers n. In 
some alternatives a variable number of servers is possible providing flexibility in 
handling the requirements of customers. 

Systems M / M / l  and MIMIn can be relatively easily handled by the theory of 
Markovian processes, and various alternatives of these systems can be considered. 
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For example, different queue disciplines can be assumed, i.e. the rules determining 
the order in which customers entering the system are eventually served. Frequent 
types of queue discipline are FIFO (first in, first out), LIFO (Last in, first out; last 
come, first served) when the last customer is served when the server has just finished 
processing the previous one, random serving of customers in the queue, or priority 
queue discipline when the customers are classified into several types and priorities 
are assigned to these types in decreasing order of importance. 

The theory of Markovian processes can be applied to systems MIMIn with a finite 
queue. A loss of customers is assumed, i.e. the supposition that all customers will be 
served is not valid. 

In solving problems of Markovian systems no major computational difficulties 
occur. The tasks can be reduced to the solution of a set of linear equations. This 
computational simplicity rests on the following assumptions : 
- steady-state systems (i.e. we are not interested in the initial stages of the system 

before its stabilization), 
- homogeneous Poisson input (exponential arrivals of customers), 
- exponentially distributed service time. 
These assumptions can be accepted in many practical cases and they are a good 

approximation of the real situation; however, there are many cases when they are 
not. Then a non-Markovian queue system with more general properties must be 
used. 

8.2.2 O t h e r  Q u e u i n g  Sys tems 

In Kendall's notation in section 8.1 only the processes in the first row are Marko- 
vian. The applicability of other processes is more general, but their solution is more 
complicated. Often, a reduction to the Markovian case is attempted to allow solution 
by simpler methods (Zitek, 1969). A well-known procedure is called the method of 
the imbedded Markov chain'). 

') The principle of the imbedded Markov chain is as follows: Assume that the process being investi- 
gated is not Markovian, i.e. the condition 

k 
= j , ,  ~ ( s , )  = j ,  ..., ~ ( s , )  = .in 

is not met for some choice of numbers n, t > sI  > s2 ... > s, 2 0 and k , / , ,  j,, ..., j,. Then a certain se- 
quence of times 

0 5 t ;  < r: _ _ _  < t: ..., lim t: = cr_ (11) 
m-m 

can be formed in such a way that condition(1) is met if the numbers t ,  sl, _ _ _ , , s o  are chosen from this time 
sequence (11). Therefore, a time sequence is sought where, for any t = and for natural n for any n-tuple 
(vector with n components) s, = t*,,, ( i  = I, 2, ..., n), 0 <= s" < s n - ,  ... < sI < f ,  this condition is met. 
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Another method for transformation to Markovian-type processes is based on an 
approximate, broader definition of the process. Apart from reduction to the Marko- 
vian process, certain processes can be investigated directly, e.g. by the theory of 
semi-Markovian stochastic processes. Often the Monte Carlo methods are used for 
queue processes that are not Markovian. They are based on a simulation of the 
investigated systems, and they exemplify some of the experimental methods of 
probability theory. They can be used for any type of process but they require a good 
deal of computer time and capacity. 

In the literature (Zitek, 1969) the following types of non-Markovian queue sys- 
tems are listed. 

System MIDI1 

In system MIMIn  customer arrivals and service time are random. These assurqp- 
tions may be an acceptable simplification of reality. In some queue systems model 
MIDI1 with constant service time may be more appropriate: each customer spends 
a fixed time interval in the serving stage. 

System MIEJ1  

The advantage of this system as compared with the MIMI1 system is the Erlan- 
gian distribution of service time. This distribution is determined by two parameters, 
and therefore it can fit the observed frequency better than the exponential distribution 
determined by one parameter only. Some other modifications of this system are 
possible, e.g. the service can be composed of several independent, successive stages; 
it can include the assumption that more than one customer enters the system at the 
same time in the form of bulk arrivals. 

System M / G / l  

This system has been developed in a number of alternative forms that try to make 
the rules for customer arrivals and service time more flexible in order to produce 
a more general model. In computation the imbedded Markov chain is often used. 

for all integer non-negative numbers j l .  j z ,  .._, j m ,  k .  The time sequence (11) is determined in such a way that 
the sequence of random numbers X(t:) for rn = I ,  2, . , , forms a Markov chain. If such a sequence (11) has 
been found, the investigation is restricted to this chain - ( X ( t X ) )  and used only the theory of Markov chains. 
The resulting properties ofthis process form the basis for the estimation of properties of the original pro- 
cess. This imbedded chain cannot reflect all the properties of the original process. It gives information 
concerning the momentary states of the process at times f:, This is often sufficient. e.g. in investigation 
of the limiting behaviour of the process for I + co. 
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System GIIMI1 

distribution of inter-arrival time and exponential service time. 

System GIIGII1 
This notation concerns general systems with one server and no assumptions about 

the inter-arrival time and service time distribution (with the exception of the as- 
sumption of the homogeneity of the process). In computation the method of the 
imbedded Markov chain is used and the aim is the distribution of steady-state 
waiting time. 

This class of systems with one server is characterized by a generally independent 

8.3 Q U E U I N G  SYSTEMS MODELS 

The basic queue model is the simple steady-state exponential channel. It is a single- 
server model with exponential inter-arrival and service times, and the queue disci- 
pline is first come, first served. The system can remain in some situation or it can 
move on to the adjoining situation. If n is the state of the system, i.e. n items are in the 
system (one customer is being served and n - 1 are in the queue) only transitions 
from state n to states n - 1, n, and n + 1 are possible. 

On this assumption, the probability density function of the time that a customer 
spends in the queue p(w) is given by (Walter et al., 1973) 

where I. is arrival rate per unit of time, i.e. probability rate, of transition from state n 

,u - service rate per unit of time that the server is busy (1111 is the mean 

The ratio Q = I./p of arrival rate to service rate is frequently called the traffic 
intensity. 

The basic operating characteristics of the system are: the mean number of cus- 
tomers in the system and its variation, mean line length, mean number of customers 
served per busy period and mean time in the system. 

The mean number of customers in the system with an infinite length of queue is 
given by 

to state n + 1 (111 is the mean time between arrivals); 

service time) 

a, m m 

A = np, = c n(1 - @)en = (1  - e)  e c nen-l (8.2) 
n = O  n = O  n =  1 



309 

The expression n$-' is the first derivative of en; the sum of derivatives is the 
derivative of the sum (the progression is convergent) and the following transcription 
is possible: 

In original values A and p, the expression (8.3) will be 

The mean number of items in the queue (mean line length) is 

The mean number of items in the queue is equal to the mean number of items in 
the system reduced by the quantity e = 1 - po,  i.e. the fraction of the time the server 
is busy. For a single server the quantity ?if is not very important but it is in the case 
of several servers. 

For the variance of the number of items in the system the following expression 
is valid: 

or, in original quantities, 

(8.6) 

The mean time in the system can "e computed using the following consideration. 
In the system, ii items, on average, are waiting and an average of A, items per time 
unit arrive in the system. The mean time in the system can be derived by the division 
of E by A, i.e. 

Similarly for the mean time in line 

1 1  - - T =2=-- 
A p - L p  
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By these methods a simple queue model can be handled that uses a Poisson expo- 
nential distribution or Erlangian distribution. Erlangian distribution') of k-th order 
is defined by the probability function (with parameters > 0 and k 2 1 integer): 

j (x )  = Ae-"(lx)k-'/(k - l)! for x 1 0 
f (x )  = 0 for x < 0 

It can be shown that exponential distribution is a special case of the Erlangian 
distribution for k = 1. 

In the queuing theory, more complicated models occur and special met hods have 
to be used (Drab, 1973; Ventcel, 1966; Walter-Lauber, 1975). 

The models of queuing systems can be applied for the solution of problems of 
various technological processes, the rational organization of the health service, 
traffic problems and of problems of water resources systems (see section 8.6). 

8.4 UNRELIABLE SYSTEMS 

So far, the queuing systems have been assumed to be reliable. This assumption 
is frequently unrealistic in practice. Therefore, much work has been devoted to the 
investigation of unreliable systems (Zitek, 1969; Gnedenko-Kovalenko, 1966; Kli- 
mov, 1966). 

In models of queuing systems, unreliability is caused by the intermittent failure 
of servers that cannot, at some stage, serve the customers. 

Often, the unreliable systems are modelled as systems with u priority queue disci- 
pline, as in the following example: from time to time a customer with absolute pri- 
ority arrives (= failure) and the service of other customers continues only after this 
customer has left the system (i.e., after restarting the service). 

In principle, the following systems with priority queue discipline are possible 
(characterized by the treatment of the customer that is being served at the moment 
when a customer with higher priority arrives, i.e., at the moment when the failure 
occurs): 

a) the service of the customer is normally finished (a system with a weak priority), 
b) the service is immediately interrupted (a system with strong or absolute pri- 

ba) the customer whose service was interrupted immediately leaves the system 
ority), 

(without being served) 

' )  Thc Erlangian cumulative distribution function is defined by 

~ ( u )  = I - e ~ "  x ( ~ x p ( j !  
F(.x) = o  j = O  

I - I  

for x 2 o 
for .x < 0 
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bb) the customer with interrupted service returns to the queue and is then served 
bba) the service continues at the point of interruption, 
bbb) the service is restarted from the beginning. 
Unreliable systems can similarly be classified by these types of failures. 
Certain differences exist between unreliable systems and systems with priority 

discipline: 
- in unreliable systems the server stops in the middle of carrying out the repair 

and no further failure is possible; it corresponds to the assumption that there is only 
one customer with absolute priority; 
- the failure can occur at any time, even if the server is not busy and when no 

customer is being served. However, there are systems where failure is possible only 
when the server is busy or when the server is idle, or the service is in any case finished 
(this last case corresponds to the system with weak priority, the failure is modelled 
for a customer with weak priority). 

In all unreliable systems, new data are added to the basic data describing the 
organization and operation of the system. These new data characterize the prob- 
ability distribution of failure occurrence and the probability distribution of repair 
time. The probability of failure can depend on different factors, e.g., the time from 
starting the system after the last failure, the time spent by the customer in being 
served, the number of customers that have been served after the last failure, the total 
service time, the time that was necessary for the last repair, etc. Using these data, 
the probability of service without failure, the probability distribution of the possible 
failure, etc., can be determined. The problems are far more complicated in cases of 
unreliable systems with a larger number of servers. 

8.5 QUEUING SYSTEMS SIMULATION 

The principles of the simulation of queuing systems have been explained in the 
references (Buslenko and Shreyder, 1961; Zitek, 1969; Saaty, 1961; Votruba et ul., 
1974; Kaufman and Cruon, 1961, etc.). Only the basic ideas of this approach are 
mentioned in this section. 

Although some outstanding results have been achieved in the queuing theory, 
this theory is not (and probably never will be) able to solve the problems that arise 
in practical life. The models oversimplify the complex problems of reality, or if the 
models are a good approximation of reality they are mathematically intractable as 
there are no effective analytical methods for solution. If a rough approximation is 
not acceptable, simulation methods and mainly the Monte Carlo simulation models 
have to be used for this more complicated case. The main advantage of these methods 
is their universality; they can be used for any process and any model. However, they 
need a lot of computation and computer time and great memory capacity. 
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The application of simulation methods to the tasks of the queuing theory is based 
on a simple principle (Zitek, 1969): that the unknown probability of a random event 
is estimated by repeating many independent experiments, and the relative frequency 
of this event is the estimate of this probability. A similar method is used in the esti- 
mation of characteristics of distribution of the random variable, e.g., the mean 
value is approximated by the average of the observed values. Both of these tasks 
occur in the queuing theory; the probability of some event is looked for (e.g., service 
without queuing), i.e., the probability that x will get a value from some interval, or 
its mean value. 

The practical possibility of the application of simulation models is determined at 
sufficient speed in repeating these experiments. Repetition of experiments is often 
necessary to obtain the probability (or mean values) with sufficient accuracy. These 
estimations are based on the law of large numbers. 

The determination of the probability of one phenomenon is often not sufficient; 
a set of phenomena is required. For example, in searching for the probability dis- 
tribution function of a random variable x, we want to know the values F(x)  = P 
( X  5 x) for all real x values; in practice the values F(xj)  are determined only for some 
samples x j  (in finite number) and the concept of the diagram of the whole function F ( x )  
is based on these samples. The more values F(xj) that ard found, the more accurate 
is the approximation of function F(x) ,  but more experiment are required, In addition, 
we are interested in changes of function F ( x )  related to changes in basic character- 
istics and parameters of the system. It is apparent that without computers the prac- 
tical application of simulation procedures would not be possible. 

8.6 APPLICATION OF QUEUING THEORY IN WRS 

In section 7.4 the mathematical similarity of the inventory theory and the queuing 
theory was mentioned, resulting in the application of these theories in WRS. Now 
this similarity is clarified. In section 7.4.2 the general analytical solution of sets of 
equations (7.21) was not reached, i.e., the set 

Ro = ~ $ 0  + PoR1 + ... + p o R M  

R 1  = P I R ,  + P I R ,  + ... + P I R ,  + P O R M + l  

R v - M - 1  = p V - M - I R O  + ... + p v - M - i R M  + P V - M - ~ R M + ~  + ... + ~ o R v - 1  

R V - M  = p v - M R o  + ... + P V - M R M  + p V - M - i R M M + I  + ... + po(Rv + Rv+1 + ...) 
R V - M + S  = P V - M + S R O  + ... + P V - M + S R M  + P V - M + S - l R M + I  + ... + 

(8.9) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. + ... + ps(Rv + R V + l  + ...) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
where (Fig. 7.8) V is the active storage of the reservoir, and M is the release from the 
reservoir. 
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The definitions of values pi and Ri is as follows: if X, is the inflow in the reservoir 
in the year t and Z ,  is the storage before the inflow X ,  then in time t the variable X ,  
is equal to i with probability pi and the sum of the volume of water remaining in 
reservoir 2, and the inflow X ,  will equal i (Z,  + X, = i), with probability Ri. By this 
infinite system of linear equations the probability distribution of Z,  is determined, 
given the distribution of Z, + X, and X,. 

The main difficulties in the analytical solution of the system of these equations was 
caused by the boundary conditions Z = 0 and 2 = V - M .  Moran et al., 1959, 
investigated the assumption of infinite storage in two cases: 

(1) the phenomena near the top of the active storage in cases where the distri- 
bution of variable Z, was such that it was very improbable that Z,  would be equal 
to values near zero, and they assumed an infinitely deep reservoir; 

(2) in the opposite case where the probability of a full reservoir was very small, 
they assumed the reservoir to be infinite in the upward direction and a distribution 
of 2, near zero values was considered. 

Assuming the infinite active storage V = 00 and steady state and discrete variables, 
the system of equations (8.9) has the following form: 

Using Foster’s method (Foster, 1953) it can be proved that this system has a sol- 
ution dlfferent from zero, i.e., there exists a probability distribution (different from 
zero) near the level of the infinitely deep reservoir. The solution, however, is not 
easy, and some methods of the queuing theory can be used for it. The queue with 
bulk service is used (Bailey, 1954): the active storage is represented by the length of 
the queue and the service is assumed in time ... t i - l ,  ti, t i + l ,  ... so that intervals 
u = ( t i+  - ti) are independently distributed with probability distribution dB(u). 

The customers’ arrivals are random, forming a Poisson process with the mean 
value A ;  in a time ti, a bulk of customers, M (or the whole queue if its length is shorter 
than M )  is served. Knowing the distribution dB(u) and the parameter A, the prob- 
abilities pi can be computed, i.e., the probabilities that at one interval, i, customers 
will arrive in the queue. The length of the queue just before the beginning of the 
service is a random variable of an infinite Markov chain, the transition and station- 
ary probabilities of which are given by the set of equations (8.10). 

Using this analogy with the queuing theory, the set of equations (8.10) can be 
solved. The solution by generating functions was first published by Bailey (1954) and 
was described in detail by Moran (1959). 
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The queuing theory can be used for the similar problem of the operating policy 
for release, where continuous variables are used and the input is a negative expo- 
nential distribution. 

Let us investigate the possibility of the direct solution of a continuous alternative 
of the set of equations (8.10), i.e., the equation (7.22) of section 7.4.2. For an infinite V 
the set of equations (8.9) resp. the equations (7.22) become 

(8.1 1) 

where g(x) is the probability density function of variable Y,, f ( x )  is the probability 
density function of X, .  For this equation the Laplace transform can be used for the 
cumulative probability function of variable X ,  and V, = X ,  + Z,  

f ( t )  dt, G(Y) = ilq(f) dr 
0 

and in simple form 

G(M + 11 - t) dF(t) 

(8.12) 

(8.13) 

This type of integral equation is well-known from the queuing theory. Lindley, 
1952, derived the solution and proved that the steady-state solution exists if the mean 
input value is less than M ,  and if the initial state is zero. The distribution of vari- 
able Y, converges on the stationary state of the process. 

Smith, 1953, has shown that another useful analogy between infinite reservoirs 
and the queuing theory is possible, and it can be seen in the following case of the 
queuing theory. A queue is assumed with one server only and with regular inter- 
arrival time M .  In Lindley's general theory these intervals are random, in this ap- 
plication it is possible to use fixed intervals. If no queue has been formed, the cus- 
tomer is served immediately, otherwise he must wait till all the customers in front 
of him are served. 

The service time, denoted Xi, is a random variable with the cumulative distri- 
bution function F(x),  Xi being mutually independent and independent of queue 
characteristics. The time interval necessary for serving the whole queue that had 
formed immediately before the arrival time ti, is denoted Zi. This is the waiting time 
of a new customer in the queue between the time of his arrival and the beginning of 
his service. Zi + Xi is then the total time that a new customer spends in the system, 
i.e. the time interval between the arrival of a customer and the end of his service. The 
whole time interval necessary for serving the queue immediately before the time 
ti+ is Zi+ l .  It is equal to 
Zi+, = Zi + X i  - M if Zi + X i  - M > 0 
zi+, = 0 if Zi + Xi - M 2 0 
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This queuing problem can be applied for an infinite reservoir, assuming that Xi 
represents the random inflow X, into reservoir and reservoir storage just before the 
withdrawal is represented by the waiting time of the last customer. The withdrawal M 
from reservoir is represented by the reduction in waiting time of the new customer 
during the time interval (ti, t i +  ,). In this model (Smith, 1953) the release is not realized 
at once, but in regular steps. The assumption of regular withdrawals does not change 
the underlying theory, as the equation (8.13) is valid for this example. 

It is apparent that the way the problems of reservoir operation and queuing cor- 
respond to each other is quite different from the previous case, where the length of 
the queue taken as a discrete variable correspond to storage of the reservoir, and 
bulk service was assumed. In this case, the service of a single customer is assumed and 
storage of reservoir is modelled by the waiting time of a new customer in the queue. 

The numerical solution of this case is that of equation (8.13). It was published by 
Lindley, 1952, for cases where the input variable has a Pearson type 111 probability 
distribution. The resulting probability distribution (Moran, 1959) is the distribution 
in this case. From a mathematical point of view, this latter case of the application 
of the queuing theory for WRS is a continuous analogue of the previous case, often 
called Bailey’s queuing theory with bulk service. However, the correspondence 
between the WRS model and queuing theory is different in each case. 

Gani and Prabhu, 1957, derived the solution of equations for the infinite reservoir 
for the case when storage in the reservoir has a negative exponential distribution. 

Moran, 1959, Kendal, 1957, and others described a number of possible approaches, 
the latter used the operation of reservoirs with continuous time. Input is a continuous 
inflow, withdrawal is also continuous, and takes place until the reservoir is empty. 
Both finite and infinite reservoirs were investigated. In addition, Kendall, 1957, 
investigated a non-stationary case of distribution of storage: the initial state in time 
t = 0 is given by storage y and the probability distribution of time interval Tin which 
the reservoir is emptied for the first time is looked for. This method approaches the 
theory of common risk. All these studies are stimulative and use sophisticated math- 
ematical theory, but the stage of development is not sufficient for its practical appli- 
cation. In addition, most models use an unrealistic assumption that the inflow is 
an additive process with a Pearson type Ill distribution. 

The numerical calculation in these models is similar to that in the inventory theory, 
illustrated by a simple example in section 7.4.1. 

Another approach to the application of the queuing theory for reservoir operation 
was described by Chorafas, 1965. Binomial probability distribution is assumed for 
random inflow to the reservoir in time-sequenced stages. The release from the 
reservoir, in each stage, is predetermined, where there is an empty reservoir, or where 
spillage has occurred. These models yield relationships among the following quan- 
tities: mean values and variances of reservoir inflows, reservoir storage, thc chosen 
values of reservoir release, probability of deficits and spillage. 



316 

These models can be described by 
Zi = Zi_l + (xi + esxi) - Mi (8.14) 

where Zi is content of reservoir at the end of stage i, Zi- is the remaining content 
of reservoir from the previous stage, xi is the mean value of inflow at stage i, sxi is its 
standard deviation, e is a random number with a normal distribution N (0, 1) (zero 
mean and unit variance), and Mi is the reservoir release at stage i. 

In solution the initial state is determined by the given or chosen storage of reser- 
voir and release. In equation (8.14) other values are computed. The calculation is 
carried out several times on a computer with different input values. The results of 
such calculations are taken to be a sample of a set of physical reactions of the system 
that forms a response surface for various possible solutions. If the economic para- 
meters are considered in the model, namely initial and operational costs, the bene- 
fits from different values of withdrawals, eventual losses due to deficits in water 
supply, the physical response surface can be transformed into an economical response 
surface or a net benefit one. These methods can be used to define operation of reser- 
voirs with carry-over; some results, however, may be sub-optimal. 

To summarize the application of the queuing theory in WRS: the idea of using 
the queuing theory for the operation of reservoirs is promising; it is, however, obvious 
that the people behind this idea are mathematicians and not water resource engineers. 
The studies use complicated and sophisticated mathematical operations, but the 
applicability of the results in the practice of WRS is limited for two main reasons: 
(i) the assumptions oversimplify the reality, and (ii) the difficulties in applying the 
calculations to real situations are neglected. Moran admitted this situation and 
stated that all the methods investigated can, in principle, be used for a system of 
reservoirs; however, the calculations involved for application to a single reservoir 
are so complicated that the recommended numerical method is the Monte Carlo 
procedure. 

Kartvelishvili, 1963, criticises these applications because they use the simplified 
assumption that the river flow has a Pearson type 111 distribution, and he underlines 
the assumption that infinite active reservoir storage can be accepted in a limited 
number of cases. Buras, 1972, in his WRS monograph devotes little space to the 
application of the queuing theory in WRS. 




