
3 BASIC DATA FOR CALCULATING 
THE STORAGE FUNCTION OF RESERVOIRS 

The basic data for the calculation of the storage function of reservoirs consist of 
- hydrological records 
- the needs of users and consumers. 

3.1 HYDROLOGICAL RECORDS AND THEIR PROCESSING 

The basic hydrological records for the mathematical solution of the reservoir 
function are the flow series of the stream cross-sections. To what extent and how 
these hydrological records are processed depends on 
- the aim and significance of the reservoir, 
- the stage of the design, 
- the character and range of the hydrological data. 

3.1.1 Selection and evaluation of hydrological series 

Longer hydrological series are usually a more reliable basis than shorter ones. 
However, the so-called representative character of the series is important. A series 
represents the hydrological conditions in the watershed well if it includes data 
leading to reliable results in the solution of flow-regime problems. 

Other observations (outflow from adjacent watersheds, precipitation, etc.) can 
increase the representative value of a given shorter series within the framework of 
a long series, if 
- they cover a long period 
- they include the years of the studied short-term hydrological series 
- their relationship to the data in the hydrological series is close enough. 
If these conditions are fulfilled, the given hydrological series can be prolonged. 

Sufficiently reliable parameters can be expected in the prolonged series, if the series 
in question is not shorter than 15 years and if the correlation coefficient for the 
synchronous values of the series and their analogues does not amount to less than 0.90. 
A period of about 20 years is considered to be long enough for the calculation of 
seasonal control. For over-year flow periods we need at least 30 years of data 
which naturally have to be assessed as to their representativeness and suitability. 
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In Czechoslovakia better results arr usua' \ achieved by hydrological analogies of the discharges from 
two analogous watersheds, since Czechoslovakia hw . dense network of watergauges with comparatively 
long series: the relationship betxeen precipitation snd discharge will usually be less close. 

Reservoirs on streams usually have more complete and reliable hydrological 
records than those on small rivers. 

The disadvantage of real years is that they introduce a random element into the 
results of the calculations. Statistical methods are used to adjust the measured data. 

The adjusted measured data, especially for the decisive years or periods, result 
in hypothetical hydrological records which are more reliable than the measured ones. 

Fig. 3.4 Hydrograph of mean monthly discharges of the river Labe at Dtfin 

In the past, a hypothetical year was considered to be favourable basis for calculating 
reservoirs with annual flow control. It was worked out by selecting in the hydrological 
series of the flow, in individual decades or months, those with the same required 
probability of exceedance. This is how a hypothetical year is created, and it usually 
has a smoother pattern than any real year. Its demands regarding the reservoir volume 
are lower than for a real year with the same exceedance probability; it cannot therefore 
be recommended as a basis for the calculation of reservoir volumes. 
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More promising is the method of hydrological phase characteristics (Potapov, 
1951) which is based on the assumption that a number of characteristic phases 
(periods) of the annual discharge regime, repeated every year and differing only in 
intensity or in the date of their beginning or end, can be found for each type of river. 

The flow conditions of Middle European rivers are much more complicated and 
heterogeneous (as shown in Fig. 3.4, depicting the average monthly Q ,  discharges 
of the river Labe in DtfEin for the decade 1931-1940). The sum of the monthly dis- 
charges for the identical months of the entire decade (Q,  curve for 1931-1940) has 
a higher discharge in March and April and a minimum discharge in July and August, 
as well as higher flows in autumn and winter. In winter the flow is not very low, as 
even in winter there is rainfall and ice melts in the catchment area of the Labe. 

Comparing the flow in the respective years to this cumulative curve for the whole 
decade, a good similarity can only be seen for the years 1931, 1935, 1937 and 1940; 
in the other years the flow is distributed differently over the year. The spring flow 
from snow water is not always very high (in 1936, 1938); the flow is also strongly 
influenced by summer rainfall (in 1932, 1936). 

A good example is the comparison of the two years with the highest flow in the 
entire 100-year period, i.e., 1941 (Fig. 3.4b) and 1926 (Fig. 3.4~). In 1941, the highest 
flow period occurred in March and April, while in 1926 it occurred in the summer 
months of June and July. 

This unsteady nature of the flow has to be taken into account when designing 
reservoirs in such hydrological conditions, and only after careful deliberation can 
methods which proved successful on rivers with a simpler flow regime be used. For 
the design-but mainly for the operation of these reservoirs-it is important to know 
that one cannot rely on regular filling with the spring floods; these often have values 
of a long-term average Q, or even less (1932,1933,1934,1936). 

Often, not 'only the annual discharge regime, but also the water demand (with- 
drawal from the reservoirs) changes considerably during the year. Water is withdrawn 
in the vegetation period for irrigation purposes and in the winter mainly for power 
production. The relationship between the flow in the rivers and the withdrawal from 
the reservoirs-their size and their timing (see Fig. 1.19b)-always has to be taken 
into consideration. 

The variability of the beginning and end of the individual flow periods (phases) 
and the flow in the individual periods must be analysed. A hydrograph adjusted 
according to such analyses does not lead to an unrealistic equalization of the flow, 
but preserves the character of the annual discharge regime. 

A design period of several years is also selected according to the analysis of the 
entire series. The chosen period should: 1. have a mean discharge close to the long- 
term average, 2. include years with various stream flows in characteristic groups, 
3. have a variation coefficient of the annual discharges close to that for the entire 
series. 
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The fulfillment of these conditions is obvious from the mass curve of the deviation 
from the mean of the module coefficients (k i  - 1) and the mass curve of the values 
(k i  - 1)2 where 

Qr,i k .  = - 
’ Qa 

Qr,i is the mean annual flow in an optional ith year, 
Q,  is the long-term mean annual flow. 

The sum of all n values (ki - 1) in an n-year long hydrological series is zero. The 
mass curve c(ki - 1) = f ( t )  plotted in right angle coordinates therefore terminates 
at the end of the series in the horizontal axis of the abscissae. Any other horizontal 
straight line intersecting the mass curve of the module coefficients is always traced 
between two points of intersection of the period in which z ( k  - 1) = 0, or the 
period with the same average flow as the whole of the series. A period selected in this 
way therefore fulfills the first condition for a correct determination of the design 
period. 

= f ( t )  can serve the same 
purpose. If drawn from the pole at the height Q,, it terminates at the end of the series 
in the horizontal straight line drawn through the beginning of the mass curve. Any 
other horizontal straight line intersecting this mass curve also traces, always between 
two points of intersection, periods with a flow identical with the entire series. If, 
generally speaking, the pole is not at height Q,, all data given so far about the hori- 
zontal straight line are true for the line connecting the beginning and the end of the 
mass curve, and for all lines parallel to it, intersecting the mass curve. 

The mass curve c ( k i  - 1)2 = f ( t )  (Andreyanov, 1957) also helps to determine 
the period in which the variation coefficient is close to the value C, of the entire 
n-year series. It is not difficult to draw this curve, so that at the end of the n-year 
series, it ends in a horizontal line drawn from the starting point of the mass curve. 

We either first calculate the sum x ( k i  - 1)’ and draw the base of the oblique 

coordinates of the mass curve to intersect its starting point at the end of the n-year 

series, at a perpendicular distance of - 1 (ki  - 1)’ from the horizontal line, or we 

draw the mass curve l ( k i  - 1)2 from the pole at the point of the mean value 

Obviously the mass curve of the mean annual flow 

n 

i= 1 

n 

i =  1 

Thus each horizontal line intersecting the mass curve x ( k  - l)’, always traces 
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an m-year period between two points of intersection. Its mean value for ( k  - 1)2 
corresponds to the quantity for the entire period, i.e. 

n r + m  

(ki - 1)’ . c ( k i  - 1)’ 
- i = x  - i =  1 

n m 

If we multiply both sides of the equation by the fraction 

1 

(3.3) 

1 
1 - -  

n 

and extract the root, we obtain 
I n  

\i n - l  

m \i m - -  
n 

(3.4) 

(3.5) 

Fig. 3.5 Selection of a design period f ro in  ii 40-year series (Slapy on ilic Vltaba) 
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as the value of Jm does not differ greatly from the value of Jm-1 if 
rn has a high value. 

Instead of the mass curve of the (ki - 1)2 values, the mass curve for (Q,,i - Qa)2  

can be used, since these are values proportional to the proportion coefficient 1/Qf. 
This method is advantageous if the module coefficients (k - 1) need not be calculated 
for other purposes. 

A 40-year long hydrological series of the river Vltava in Slapy, with data for the mean annual flow 
recorded from 191 1 to 1950 (Fig. 3.5), was chosen as an example. 

From the entire series, a common period of several years was sought in which the connecting lines be- 
tween the beginning and the end of the respective sections of the two mass curves would be approximately 
horizontal. The period 1931 to 1940 fulfilled both conditions. 

The selected decade contains elements with various water yields in suitable groupings; years with a water 
yield very similar to the average years (1931 and 1938), a one very high-flow year (1940) the water yield 
of which was only surpassed in 1941, a year with an extraordinarily high-flow. 

The selected decade suits all the requirements of the period to solve the problem of within-year control. 
However, the discharge distribution in the given years will have to be checked. 

This favourable conclusion was reached by comparison of a 10-year series with a 40-year series (191 1 
to 1950). The question remains: to what extent are the above-mentioned forty years representative. Thus, 
comparisons for other cross-sections with longer hydrological series were carried out; the results are 
recorded in Table 3.1. 

Table 3.1 Comparison of statistical characteristics for various periods 

Profile 193 1 - 1940 1931-1960 Long-term Qm C, Note 
Q. C, Q. C, period 

[m3 s - ' 1  [m' s- '1 [m3 s-'1 

Labe-DEEin 305.5 0.35 305.0 0.36 1851-1960 300 0.29 year 
1851-1900 293 0.27 

Berounka- 32.7 0.47 31.8 0.46 1887-1960 30.1 0.36 water 
-Kfivoklht years 

water water water 
year XII-XI year XI-X year XII-XI 

Vltava- 86 0.41 discharge 189 1 - 1 9 4  84 0.34 water 
-St&chovice influenced years XU-XI 

by reservoirs 

Mean annual 682 0.152 669 0.157 1876-1960 679 0.133 calendar 
precipitations [mm] [mml [mml years 
(in Bohemia) 
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The table shows that the ten years 1931 to 1940 and the thirty years 1931 to 1960 have similar average 
flows as well as a similar variation coeficient; but both these values are much higher than the respective 
values for long-term periods reaching further back into the past. 

The table also indicates that the river Berounka has a much higher C, than the rivers Labe and Vltava, 
i.e., their flow variability is lower. 

The last line of the table lists the average annual precipitations in Bohemia for these periods, as well 
as their variation coefficients. We can see that the precipitation variability is much smaller than the flow 
variability, but even the precipitation values indicate that their variability was much higher during the last 
thirty years than in a longer period going far back to the past. That the variability of the annual flow is 
larger than that of the annual precipitations is also evident from the relationship between the maximum 
and minimum values. 

As indicator for the degree of representativeness of the selected period is also the distance between 
the exceedance curves: the empirical and the theoretical curves for the period. 
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Fig. 3.6 Fitting of theoretical exceedance curve of mean monthly flows with empirical curves 
(Slapy on the river Vltava) 

In Fig. 3.6, the theoretical exceedance curves are plotted according to Rybkin's table. The empirical 
points of the 40-year series are denoted by circles and the 10-year series (1931-1940) by crosses. The 
exceedance probability of the individual members of the empirical series was calculated from Chegodayev's 
formula 

m - 0.3 

n + 0.4 
P[%] = -' 100 

where m is the ordinal number of the member in the degressive sequence, and n the number of members 
in the whole sequence (here 40 and 10). 

The empirical points of the 40-year series can easily be plotted along the theoretical exceedance curve. 
The deviations of the 10-year series from the theoretical curve are the same as the respective deviations of 
the 40-year series. This means that according to this indicator it can be stated that the 10-year series (1931 
to 1940) has a good representative character within the 40-year series (191 1-1950). 
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As it is usually not possible to find a given period with an average flow Qb equalling the long-term average 
Q ,  this drawback has either to be eliminated by multiplying the flow Q, by Q./Qb or by correcting the 
results of the solution. 

The compilation of synthetic hydrological series by modelling is a further stage 
in hydrological data processing (see Section 3.2). 

3.1.2 Solutions where there is a lack of direct hydrological observations 

For reservoirs on streams, the flow of which has not been measured or has only 
short hydrological series, hydrological data have to be procured in an indirect 
manner (Dub, 1963; Ogievski, 1952). 

If there are no direct observations, we can work in the following way: 
(a) The long-term mean flow, as well as the statistical parameters (Cv, C,) de- 

termining the flow distribution, can be ascertained from the empirical dependence 
of the mean annual flow on the climatic conditions. The results of such calculations 
are often unsatisfactory and cannot be recommended generally. An analogy with 
the nearest observed catchment area usually supplies better data. If the flow par- 
ameters are to be studied by the most reliable analogy, a careful analysis of all 
circumstances which might influence it is necessary, both in the catchment area 
where there are no direct measurements, as well as in the watershed of the similar 
stream which is furnishing the information. First of all, we have to compare the 
annual and seasonal precipitations, but also the slope conditions in the catchment 
area, the geological conditions and soil characteristics, the vegetation, air temperature, 
saturation deficit, etc. In the case of streams in mountainous aceas, anyone using 
the analogy must be aware of the fact that discharges depend greatly on the height 
of the waterhed above sea-level. 

(b) The flow distribution during the year is also determined according to a suitable, 
analogous stream; the lack of directly measured data is balanced by the selection of 
a most unfavourable flow distribution. In this way a fictive hydrograph is compiled - 
but, of course, based on hydrological analogy. According to this analogy we also 
determine the discharge of the required exceedance probability. 

If the direct observations supply a short hydrological series (4 to 10 years), their 
representative nature has to be tested by comparison with a related profile and if 
it is not representative, it has to be prolonged according to hydrological analogy with 
that profile. The size of the catchment area also has to be taken into consideration, 
as the correlation between small and much larger watersheds is often not very close. 

Correlation methods serve to express approximate relationships between two 
quantities x and y ,  as compared to a functional relationship in which a certain exact 
value y corresponds to a certain x, i.e., y is a “function” of x. 

In a graphic presentation of such relationships the points found by measurement 
do not form a continuous line, they are scattered around the curve. Correlation 
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analyses are used for a quantitative expression of a close relationship between two 
quantities. In hydrology, a linear correlation relarionship is most frequently used, 
with the regression equation 

and with the correlation coefficient 

where ax, uy are the standard deviations of x and y from their mean values R and 7: 

Equation (3.7) is the equation of a regression of y according to x; for the same 
values we can write the equation of regression of x according to y: 

x - R =  r - ( y -  OX 7) 
OY 

(3.10) 

Both equations express straight lines with the slopes 

(3.11) 

and the relationship between the two slopes must be 

bxb, = r2  (3.12) 

The probable error E of the correlation coefficient r is calculated from 

1 - r2 
E = k0.674- 

4 
(3.13) 

and the extreme error is usually assumed to be four times the probable error. There- 
fore, the complete expression for the correlation coefficient is 

r k 4c 

In the case of a definite functional dependence, both regression lines are identical 
and r = 1.  If r < 1 the two lines intersect in a point, with the coordinates K and j j  
at an angle-the larger the angle, the smaller the r-i.e., the less close is the relation- 
ship. 

If we search for the respective y values with respect to the selected x values according 
to the regression lines, we use the line (3.7); if we search for the respective x for 
a selected y, we use line (3.10). The line going through the point of intersection (X, 7) 
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and halving the angle of the regression lines, expresses the approximate relationship 
between x and y, but does not express how close that relationship is. 

The correlation method can also be applied for the dependence of one variable y 
on two variables x and z ,  i.e., for three variables (Ogievski, 1952, p. 273). 

There are also curvilinear correlations in hydrology and mathematical statistics 
can also solve these. Such calculations are complicated and laborious, thus Curvilinear 
relationships are usually defined graphically. 

A curved relationship can frequently be expressed satisfactorily by the exponential 
equation y = ax". The relationship between the logarithms of the coordinates of 
such curves, the so-called logarithmic transformations, are then expressed in a straight 
line. This is then no longer a correlation between x and y, but between their logarithms. 
The results are equations of straight lines of the regression of the logarithmic trans- 
formations, from which we pass on to the curves themselves. 
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Fig. 3.7 Linear and non-linear correlation between the flows of the Vltava, Labe and Ohie rivers 
(1925-1946) 

When applying correlation methods, we first have to predetermine graphically 
the general character of the correlation and then afterwards to perform the cal- 
culation. 

The correlation methods give an accurate description of the hydrological relations 
and offer a more objective criterion for judging how close the relationship between 
the variable quantities is; these methods are rather laborious and that is why often 
only the graphical presentation of these relationships, which is fully satisfactory, 
is used. 



101 

If the variation coefficient is known in both profiles, the correlation between the 
annual flows can be determined by the Pearson curves or Rybkin tables for the theor- 
etical exceedance curves. 

Figure 3.7 shows the correlation between certain profiles on Czech rivers. A linear 
correlation was used 

Q, = aQx + b 

and a curvilinear correlation with equation 

Q, = kQ: 

(3.14) 

(3.15) 

in which Q,, is the value of the required flow, Q, is the known flow of the site 
used as a basis and a, b, k,  n are the constant parameters for a certain correlation. 

Results of the calculation of some correlations for some rivers in the catchment 
area of the Labe can be found in the book by Votruba and Broia (1966). 

3.1.3 Statistical and probability processing of hydrological series 

The aim of the processing of measured hydrological quantities is to gain more 
useful information for the calculation of a reservoir than the original series could 
supply. This is why the probability theory, mathematical statistics and the theory 
of random processes, are used. The results are 
- general statistical characteristics of the series, 
- the laws of distribution 
- synthetic (modelled) pseudo-chronological series. 
In water management the above-mentioned methods are used to study random 

phenomena, i.e., phenomena which cannot be forecast for each individual case 
generally, although a certain complex of conditions is adhered to. For instance, we 
cannot forecast the spring flow from the snow cover of the same watershed, although 
we know the water content of the snow cover in the watershed and other genetic 
elements at a certain date; we cannot determine the flow process exactly, although 
we know the precipitation rate. 

One or more variables or even entire processes might be random. We shall first 
of all analyse the properties of the random variable and afterwards those of the 
random process. In both cases there might be one or more random phenomena 
involved. 

A frequently applied characteristic of the random variable is the probability of 
exceedance (reliability) expressed for the flow Q by P(Q 2 Q,), in other words: the 
probability that the flow Q, in the series Q1 2 Qz 2 ... 2 Q,  2 ... >= Q, has been 
exceeded. This probability can be expressed by a formula derived by Chegodayev 
(equation (3.6)). 
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In the probability theory, it is usual to characterize a random variable by its 
cumulative distribution function. Expressed in PA), the relationship between the ex- 
ceedance probabilities curve P(x)  and the cumulative distribution function F ( x )  is 

P(x)  = 100 - F(x)  (3.16) 

or for a general random variable t 

P(x)  = P(t 2 x) 

F(x) = P ( t  5 x) 

(3.17) 

(3.18) 

A random variable can be 
- discrete, if all its possible, but countable values can be expressed in integer 

numbers, such as 0, 1, 2, ... 
- continuous, if its set of possible values is uncountable and continuously fills 

at least a part of the axis of real numbers. The random variable, therefore, here 
represents the value of the random time function, i.e., of a random process (in the case 
of a continuous variable) or a random sequence (in the case of a discrete variable). 

The probability of each of the possible values of a continuous variable equals 
zero, because the number of possible values is infinite. We therefore divide the entire 
range of possible values of continuous random variable into a finite number of in- 
tervals and introduce the concept of the probability that the value of the continuous 
random variable will lie within the range of some interval, analogous to the work 
with the discrete random variable. 

In hydrology and water management most phenomena take a continuous character: 
water levels, flows, reservoir fillings, precipitations, etc. For calculations or graphical 
presentations we transform them into “discrete” variables in the sense of the previous 
paragraph. Even when measuring in intervals (e.g., once in 24 hours) and not practising 
continuous measurings (e.g., on the recording gauge) we have to bear in mind that 
these are “discrete” expressions of the continuous variable within the range of the 
respective interval. In this respect, mean monthly flows are, e.g., discrete variables. 

From the nature of the distribution function, according to equation (3.18), it follows 
that for an increasing x it has to rise continuously and when reaching x = <,,, it 
must be ~ ( x  3 &,,,,) = 1 (or 100%). 

More generally: from the fact that the values of the distribution function express 
a probability and, therefore, are in the range from 0 to 1, it follows that for an im- 
possible phqomenon the value F(x)  is: 

(3.19) F(-co)  = P ( t  4 -00 )  = 0 

for a certain phenomenon 

F(co)  = P(< 4 00) = 1 (3.20) 
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The derivative of the distribution function is the probability density f ( x )  expressing 
the probability that the random variable t will lie in a certain interval. Between the 
distribution function and the probability density the relation exists 

P(( 5 x) = F(x) = j:J(x)dx 

or 

(3.21) 

(3.22) 

As the distribution function does not decrease, its derivative (probability density) 
cannot be negative. 

Fig. 3.8 Relationship between 
probability density f ( x ) ,  distri- 
bution function F ( x )  and exceed- 
ance probability curve P ( x )  

The relationship between the probability density, the distribution function and 
the exceedance probabilities curve of the continuous random variable is graphically 
presented in Fig. 3.8. The diagram of the distribution shows the mass curve cor- 
responding to the probability density curve; all the relationships valid between mass 
curve and their basic curves (see Section 2.1.1) are valid for them. From these re- 
lationships and equation (3.21), it follows that F(xk)  is determined by the ordinate 
in the diagram of the distribution function vs. the abscissa x k ,  or in the basic curve 
(e.g., the probability density diagram) by an area limited by this curve above the 
horizontal axis to the ordinate of the respective abscissa xk. 
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The relation in Fig. 3.8 can be written as 

or u4ng equation (2.7) 

(3.23) 

(3.24) 

This means that the probability that the value of the continuous random variable 
will lie in the interval (x1,x2) equals the area below the probability density curve 
above the respective interval, or the difference between the ordinates of the dis- 
tribution function belonging to the abscissas xt  and x2. The inflect point I on the 
F(x)  curve belongs to the coordinate x, with a maximum f’(x). 

Figure 3.8 shows-from the coordinate x p  to &the division of the probability 
density of the continuous random variable into intervals which are supposed to have 
the mean value of the random variable within the range of the respective interval. 
The probability is marked as a step-shaped line. Compared to this is the distribution 
curve (broken line) with peaks on the distribution function curve to the continuous 
random variable. 

A similar case is that in which a very large set of discrete random variables (e.g., 
mean daily flows) is divided in equal intervals into groups (e.g., for every 
5 days-pentads, 10 days-decades) denoted classes. The interval centre represents 
all the values of the symbol of this class interval. The number of values of the symbols 
in each interval is the frequency, and the graphical presentation of such a group 
division is called a histogram (frequency distribution). 

The relative frequency of the ith class is the ratio ni/n (usually in %), where n, is 
the number of values of the symbol (frequency) in the ith class interval and n number 
of all values of the symbol. 

i 

The cumulatiue frequency in relation to the ith class is defined by the sum 

The cumulative relative frequency is denoted by 

nj. 
j =  1 

The diagram of the exceedance curve P(x) is bound to the diagram of the dis- 
tribution function F(x) according to the relation in equation (3.16), as shown in 
Fig. 3.8 for the coordinate xk. 

From equation (3.24), it follows that for x1 = --a0 and x2 = co (or according 
to Fig. 3.8 for xl  = A and x2 = B), with regard to equations (3.19) and (3.20) 

(3.25) 
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The part of this area between A and xk (Fig. 3.8) then corresponds to probability p 
that the density of the random variable is smaller than, or equal to, the selected 
number xk. In such a case, the number xk is called a quantile corresponding to 
a certain probability p. 

A sample quantile is the characteristic which divides the set of sample values, 
ranked in ascending order of magnitude, into two appropriate parts. For example, 
the quintile divides the sample into and 4 of all its values ranked in order of 
magnitude, the quartile into and 2. The lower quartile x1 separates a of the smallest 
sample values, the upper quartile x2 separates of the greatest values. 

A special case of a quantile is the median I (the sample centre), dividing the set 
of sample values ranked in order of magnitude into two parts containing the same 
number of values. Median is denoted 2 (in English literature also Me),  the notation 
being read ‘‘x tilda”. If the number of sample values is odd and equals 2m + 1, 
the median is 

j 2  = x,+, (3.26) 

If the number is even and equals 2m, the median is 

(3.27) 

The median of the distribution of a continuous random variable is determined, 
according to (3.25), from the equation 

(3.28) 

The value of the random variable < = x,, maximizing the probability density f(x) 
is called the mode. Hence, in order to determine the mode, the problem of finding 
an extreme is solved with the help of the first derivative of the function f(x) with 
respect to x(df(x)/dx = 0). The mode is denoted by 9 (in English literature also Mo) ,  
the notation being read ‘‘x hat”. 

3.1.4 Statistical parameters and characteristics of a random variable 

Complete information about a random variable is given by its frequency function 
(probability density function) f(x) or cumulative distribution function F(x). However, 
a certain amount of information can also be obtained from numerical characteristics, 
derived from the frequency function. The distribution characteristics (mean value, 
variance) are called parameters and denoted by Greek letters (p, 02, etc.), while the 
sample characteristics are denoted by italic letters (X, s2, etc.). The sample charac- 
teristics obtained by calculation serve to estimate the corresponding parameters. The 
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calculation formulae for parameters of a discrete, uniformly distributed random 
variable are identical with those for the sample characteristics. 

The moments (of various orders) of probability distribution are the most important 
distribution parameters. The moments may be of the following two types: 
- general moments m, 
- central moments M (moments around the mean). 
The general moment of the kth order is denoted by mk(<) and for a continuous 

random variable is given by 

(3.29) 

From the geometrical viewpoint it is the kth order moment with respect to the axis 
of ordinates of an area bounded by the curve y = f ( x )  and the axis of abscissae, 
i.e., the so-called initial moment. 

In the case of a discrete random variable, assuming values xl, x2, ..., xn with the 
probabilities pl, p 2 ,  .. ., p,, the general moment of the kth order is given by 

n 

mk(5) = $Pi 
i =  1 

or with p1 = p 2  = ... = pn = p = l / n  
1 n  

(3.30) 

(3.3 1)  

The right-hand sides of the equations (3.29) and (3.30) are assumed to be absolutely 
convergent. 

The general moment of the first order of a probability distribution represents the 
mean value of the random variable g, i.e., for a continuous random variable according 
to equation (3.29) 

(3.32) 

The central moments of a probability distribution Mk(<) are the moments with 

For a continuous random variable the central moment of the kth order can be 
respect to the axis containing the centre of gravity of the distribution. 

derived from equation (3.29), the following expression being obtained 

(3.33) 

for a discrete random variable the following holds, according to equation (3.30), 

(3.34) 
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and particularly, for p1 = p 2  = ... = pn = p = l / n  the equation (3.31) yields the 
expression 

1 "  
M,(5)  = - c (xi - ~ ) k  

n i = l  
(3.35) 

The central moment oJ' the Jirst order is always equal to zero. For example, ubing 
the equation (3.35) we obtain 

1 "  1 "  1 

n i = l  n i = l  n 
M , ( ( ) = - C ( x i - % ) = - ~ x i - - n X = % - X = O  (3.36) 

The central moment of the second order is called variance of the random variable 
and its expression follows from (3.33) (3.34) and (3.35) with k = 2. The square root 
of the variance is called standard deviation of the random variable and is denoted 
by 0, while the sample standard deviation is denoted by s. In this case 

(3.37) 

From the qualitative viewpoint the variance M ,  and consequently the standard 
deviation s are regarded as the measures of dispersion (or spread) of the values of 
the random variable about the mean value. 

Frequently the dispersion of a random variable about the mean is characterized 
by the ratio of the standard deviation and the mean, the quantity 

4% c, = ~ 

x 
(3.38) 

is called the coefficient of variation. Using equation (3.37) its value may be written 
as follows 

(3.39) 

With a very small number (n) of values the dispersion is described by the range R, 
i.e., the difference between the greatest and smallest value of the variable 

R = X, - x1  (3.40) 

Furthermore, the question is whether or not the distribution is symmetric with 
respect to the vertical axis containing the centre of gravity. With a symmetric dis- 
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tribution, every central moment of an odd order is evidently equal to zero, which 
follows from equation (3.35) because in such a case 

n 

1 ( X i  - n)k = 0 
i =  1 

The central moment of the third order, e.g., for a discrete random variable given 
by the formula 

1 "  

n i , l  
M 3  = - C ( X ~  - X)3 (3.41) 

is therefore used to characterize the skewness of the distribution of a random variable. 
As a rule, however, the skewness of a probability distribution is characterized by 

the zero dimension at ratio 

M 3  c, = - m (3.42) 

which is called the coefficient of' skewness and is equal, for a continuous random 
variable, to 

r m  

for a discrete random variable to 

(3.43) 

or, in particular, for p 1  = p z  = ... = p,, = p = l /n  it holds that 
n 

3 C (xi - P) 
i =  1 (3.45) c, = 

n 03(x) 

The central moment of the fourth order is used to characterize the measure of flat- 
tening of a frequency curve near its centre. The form reduced to zero dimension 

(3.46) 

is used, called the coeficient of excess (abbreviated to excess). As far as the normal 
Gauss-Laplace distribution M4/M3 = 3 is concerned its excess is equal to zero. 

Positive values of excess y indicate that the frequency curve is, in the neighbourhood 
of the mode, taller and slimmer than the normal curve with the same mean value 
and variance; and conversely for the negative values. 
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In hydrology and water management the following characteristics are most 

(a) the sample mean 
frequently used : 

i x i  - i = l  x = -  
n 

(3.47) 

(b) the sample standard deviation 

1 ( X i  - x)’ 
S =  / n n - l  i = l  

(c) the sample coefficient of variation 

I n /” \’ 1 .  

where ki = x i /K  is the modulus coefficient; 
(d) the sample skewness 

n c ( X i  - 3 3  2 (ki  - 1)3 
i =  1 n - - n i =  1 c, = 

( n  - l ) ( n  - 2) s3 ( n  - I)(. - 2) Cs 

As a rule, the expression 
n n 

i =  1 i =  1 c, = or C ,  = 
(n  - 1) C,” nCl 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

may be used, at least for a sufficiently large n ( n  > 50) n/ (n  - 1) 
The numerical sample characteristics in water management needed to construct 

the theoretical exceedance curve can also be obtained with the aid of quantiles (see 
further). 

1. 

The exceedance probabilities (distribution functions) are preferred to density 
functions and histograms for problems in hydrology and control of release from 
reservoirs. The empirical exceedance probabilities are not suitable to be employed, 
even for long series of observations because they are not sensitive enough for the 
extreme values where the probability of exceedance is near to either zero or one. For 
this, and other reasons, theoretical exceedance probabilities are used. 
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In the investigation of the theoretical probability distribution, the following 
problems arise: 

(a) to determine the type of theoretical distribution by means of analysing the 
properties of the random variable, its boundary conditions, skewness, etc. ; 

(b) to estimate the parameters of the theoretical distribution on the basis of the 
characteristics of the empirical distribution (curve fitting); 

(c) to evaluate the quality of the approximation to the chosen theoretical dis- 
tribution by the empirical distribution. 

We shall now introduce the probability distributions and evaluate their suitability 
for the tasks of water management. 

The normal, log-normal, Pearson’s, and exponential distributions, as well as the 
extreme-values distributions and the three-parameter distribution of Kritsky-Menkel, 
belong to the continuous theoretical distributions. 

The binomial and Poisson distributions are discrete theoretical distributions. 
More detailed explanation can be found in the literature on probability theory 

and mathematical statistics. 

Normal  probabi l i ty  dis t r ibut ion (Gauss-Laplace) 

Normal probability distribution holds a prominent place in mathematical statistics 
as it is well suited for the distribution of many random variables, and for the ap- 
proximation of some other continuous as well as discrete distributions. For its 
existence, the value of the investigated quantity should be the sum of many indepen- 
dent effects, each of them having only a small influence. 

One must distinguish quite clearly the role of the large number of sample values 
and the large number of independent influences creating the value of a random 
variable in each particular case. The large number of independent effects (influences) 
yields the normal character of the theoretical distribution. The large number of 
sample values ensures goodness of fit of the empirical distribution with the theoretical 
distribution, whatever type of distribution might be concerned. 

The probability density of a continuous normally distributed random variable x 
depends on the two parameters (constants): the mean value p and the standard 
deviation 0. The density is given by 

f(x) = c exp [ - v] 
The value of constant c follows from the condition (3.25) 

(3.52) 

(3.53) 
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By introducing a standardized variable t instead of variable x, we can compare the 
curves of distributions with different parameters, p and a: 

(3.54) 

and we obtain 
m 

ca j- e-12’2 dt = ca ,/% = 1 

hence 

1 
c=- (3.55) oJ2x 

Thus the probability density of the normal distribution is given by the expression 

or using the standardized variable according to eqn. (3.54) 

(3.56) 

(3.57) 

(the standardized variable has the zero mean t = 0 and the unit standard deviation 

The probability density or the normal distribution with the parameters p = 0 

From eqns. (3.23) and (3.56), the expression for the distribution function of the 

a = 1). 

and o = 1 is called the standardized probability density. 

normal distribution is 

 ex^[-^] (’ - p)’ dx (3.58) 

With the standardized variable t we obtain from equation (3.57) the distribution 
function of the standardized normal distribution in the form of 

F ( t )  = - f , - f2 /2  dt (3.59) 
,/% --co 

which represents the part of the total unit area, bounded by the normal curve and 
the horizontal axis in the interval ( -  00, t). 

dt = 1 (3.60) 
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The graphs of the probability density and the distribution function of normal 
distribution for parameters B = 0.4, 1.0 and 2.5 are shown in Fig. 3.9. In addition, it 
shows the cumulative normal distribution function on the probability net, the 
so-called Henry's line. In hydrology a skew distribution, i.e., limited in one direction 
or another, usually occurs. These conditions are not fulfilled for the normal distri- 
bution which, nevertheless, serves to derive suitable distributions. 

- (X -U)  - (x-u) 

999 4 

- X  

Fig. 3.9 Normal probability distribution for the values of the standard deviation o = 0.4; I ; 2.5 
(a) probability density; (b)  distribution functions; (c) Henry's line 

Log-normal probabili ty dis t r ibut ion 

The log-normal distribution is obtained by the logarithmic transformation 
of the normal distribution. Then the logarithm lg of the random variable is normally 
distributed, not the random variable itself. The distribution of given quantities, 
being asymmetric (which in hydrology is quite usual) is thus transformed to sym- 
metric which makes the solution of the water-management problem easier. The 
log-normal distribution is specially suited for considerably asymmetrically distributed 
culmination flood flows where C, > 3C,. 

Fig. 3.10 Probability density of log-normal 
distribution 

If the random variable 

Y = k ( x  - xo) (3.61) 

is normally distributed with parameters p(y) and o(y), then the random variable x 
has a log-normal distribution determined by three (constant) parameters: p(y), a(y) 
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and x,,. The range of the random variable x is (x,, 00) in the case of positive skewness 
and (- co, x,) in the case of negative skewness. 

The graph of the probability density of the log-normal distribution with positive 
skewness is shown in Fig. 3.10. 

For x, = 0 we obtained the log-normal distribution with the origin in zero 
determined by only two parameters p(y) and d y ) ,  its skewness is always positive and 
it holds that 

(3.62) c, = c; + 3c, 

1 (3.63) 
2 

p(y) = lg p(x) - - lg (1 + c3 

a2(y) = Ig (1 + c;) (3.64) 

It follows from the last equation that for lower values of the coefficient of variance 
C ,  (up to 0.50) it holds that C ,  a(y); e.g., for C,  = 0.500 it is a(y) = 0.472. 

Gau s s-G i br a t 1 og-n or  ma1 probabi l i ty  dis t r ibut ion 

Processing data of 13.878 daily flows Q, measured in the years 1893 to 1930 on 
the Truyere river in France, Gibrat (1951) used the probability law, which he called 
the law of proportional effect (“Loi de l’effet proportionnel”) and defined by the 
two equations 

Y 

F ( x )  = e-y’dy 
J;r - m  

(3.65) 

y = alog(x - x,) + b (3.66) 

The symbol log denotes the decadic logarithm log,,. 
According to the law of proportional effect, the relative differential dx/(x - x,) 

is to be considered instead of the differential dx, and by integrating we obtain the 
normally distributed variable 

In (x - x,) + b = In 10 log (x - x,) + b = a log (x - x,) + b 

In Gibrat’s case, the random variable x stood for the daily flow Qd. J. Prochhzka 
succeeded in applying this distribution in Czechoslovakia for the annual flow maxima 
on the Ondava in Horovce in the years 1920-1962 (Votruba - Brota, 1966). 

The Gauss-Gibrat distribution depends on the three constants a, x,, b, which 
are determined by a suitable graphical or numerical approximation to the empirical 
distribution. 

In investigating a random variable with the Gauss-Gibrat law, for convenience 
one may use the probability paper in which the scale of F is normal [the curve 
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F(y) = l/& Jr, e-y2 dy is a straight line in the coordinate system (F, y)] and the 
scale of (x - xo) is logarithmic. Thus the line approximated by the empirical dis- 
tribution will have the gradient a. The value xo close to the minimum of the sample 
values is guessed at in flood-flow analyses, however, its influence is not great. The 
coefficient a characterizes the variability of the flow. 

Gal ton  log-normal probabi l i ty  dis t r ibut ion 

F. Galton was the first who studied the log-normal distribution (1875, Galton's 
law). He considered the variable y as a function of the logarithm of the random 
variable x in the form 

(3.67) Y = a(lgx - 8) 
where the values of parameters a and 8 can be empirically estimated 

The logarithm lg may be taken to an arbitrary base. 

Ven-Te-Chow log-normal probabi l i ty  dis t r ibut ion 

Chow (1964) writes the random variable y as 

y = l n x  

and the probability density is expressed by 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

The statistical parameters of the distribution were obtained in the form 

4x1 = exP [ d Y )  + i."Y)] (3.72) 

4.) = p(x)(eo2(y) - I)'/' 

c,(x) = (e+) - 1)1/2 

C,(X) = 3C,(X) + CV"(x) 

(3.73) 

(3.74) 

(3.75) 

Chow also showed that Gumbel's extreme-values distribution is essentially a special 
case of log-normal distribution, providing 

C,  = 0.364 and C, = 1.139 



Johnson log-normal probabili ty dis t r ibut ion 

N. L. Johnson (1949) presented three types of log-normal distributions, the second 

The probability density of the distribution can be written as equation (3.71), 
one having four parameters and being limited from both sides*). 

substituting for y 

x - a  
y =  ln- 

b - x  
(3.76) 

where b and a are the upper and lower bounds, respectively, of the random variable x; 
finally we obtain 

For the random sample from discrete random quantities (e.g., annual modulus flow 
coefficients xi = ki = Qr,i/Qo), it is 

xi - a 
yi = ln- 

b - xi 

and the standardized random variable 

xi - a 
my In- - 

b - xi 

SY 

t .  = 

yhere 

Then the equation (3.77) can be rewritten as 

(b  - a) (X - a)-' (b  - x)-' e-,2,2 

4 Y )  f i  f(4 = 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

*) Yevievich (1972) wrote that because of the difficulties and inaccuracies in determining the parameters, 
it is not used in hydrology. Svanidze (1974) considered it suitable, and very flexible, for hydrological 
processes, mainly for the mean annual flows. 
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Extreme probabili ty dis t r ibut ion 

For the purpose of the statistical processing of hydrological data, the sampling 
distribution of extreme values following from the statistical theory of extreme values 
can be used. Mathematical statistics have three types of extreme-values distributions 
(cf. Smirnov et al., 1965, p. 400) two of which are suitable for our purpose: 

(a) the type suited for the minimum value of a set of random variables, sometimes 
called Weibull's distribution; 

(b) the type suited for the maximum value of the set-Gumbel distribution. 
The two distribution laws can be applied well in practice. They can be used not 

only for the calculation of the minimum and maximum flows in rivers, but similarly 
also for the minimum and maximum annual temperatures, rain and snow, precipi- 
tations, atmospheric pressure, strength of wind, etc. 

Weibull probabili ty dis t r ibut ion 

The Weibull extreme-values distribution has lower bound xo with no upper bound, 
and therefore it is used for the statistical analysis of the minimum values. Depending 
on the three constants xo, a, fl, the probability density of the distribution takes the 
form 

(3.82) f ( x )  = aP(x - xop- ' exp [ -B(x - x0p] 

Through integration we obtain the relationship for the distribution function 
r x  

F(x)  = J f ( x )  dx = 1 - exp [ -S(x - xop] 
xo 

(3.83) 

In order to simplify the expressions for mean, variance and skewness, we introduce 
the function gamma r (Euler's function of the second kind) which is 

(3.84) 

being defined by the integral (eqn. (3.84)) only for x > 0, as for x 4 0 the integral 
is divergent. 
Mean value of the Weibull distribution 

p(x) = xo + -r - ; t i ' )  
variance 

+) = 1 -[+-) a + 2  - rZ(-J] a + l  
f l  

(3.85) 

(3.86) 
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skewness 

(3.87) 

The skewness C, depends on the constant a and the relationship between the two 
parameters is shown in Fig. 3.11. 

+ I  

u“ 

Fig. 3.1 1 The relation C, = j ( a )  for Weibull’s 
-1 distribution 

0 2 4 6 8 10 7 2 1 4  1618 

t o  
-a 

For the standardized variable t = [x - dx)]/o(x) the Weibull distribution 

In the analysis of minimum flows we can write the basic formulae in the form of: 
depends on one single constant a. 

for the frequency function 

a x - x o  
f(x) = (G) exp [ - (=TI 

for the distribution function 

F(x) = f(x) dx = 1 - exp [ - (=)”I s:. 
for the exceedance probabilities 

(3.88) 

(3.89) 

(3.90) 

Using the form as above, the distribution depends on three constants: 
Q’ - the so-called characteristic of “minimal” flow corresponding to the flow with 

xo - the minimum possible value of x; 
a - the slope of the exceedance probabilities curve in straight-line transformation, 

the exceedance probability P(Q’) = 0.368 = e-’; 

depending on the variance. 
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Gumbel  probabili ty dis t r ibut ion 

E. J. Gumbel introduced his probability distribution law while investigating 
maximum age and called it the “law of maximum value”. In the U.S.A., the Gumbel 
distribution is commonly used for statistical analysis of flood flows. Sometimes, it 
is, according to its mathematical description, called the double exponential distribution. 

The double exponential distribution is unlimited from either side and its probability 
density is given by 

f ( x )  = e-2 e-e-z (3.91) 

where z denotes the standardized deviation from the mode and depends on the 
random variable x according to the linear relation 

1 

0.7800 
z = -  (X - AX) + 0.4500) (3.92) 

or with the aid of general parameters it may be written as 

z = a(x - f l )  (3.93) 

Using sample characteristics the parameters can be estimated by the terms 

(3.94) 

where 7t = 3.14 (Ludolph’s number) 
y = 0.577 (Euler’s constant). 

The preceeding formulae remain valid only in the asymptotic sense. For any 
finite sample they must be considered as approximations (Dub and Nemec, 1969). 

The distribution function of the Gumbel distribution is 

~ ( x )  = e-e-z (3.95) 

hence the exceedance probability is 

P(X)  = 1 - e-‘-‘ (3.96) 

A disadvantage of the Gumbel distribution is that there is only one constant 
value of the coefficient of skewness, namely C, = 1.139, however, the value is close 
to the coefficients of skewness for a large class of rivers. The exceedance probability 
for mode is P = 63.2% and that for the mean is P = 42.97%. 

In spite of having been recommended for analysing maximum peak discharges, 
the Gumbel distribution was found to be less suitable in some cases. Nevertheless, 
it is often used with probabilistic analysis of maximum precipitations (of n days, 
of n hours). 
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Pearson probabili ty dis t r ibut ion 

K. Pearson considered a very general differential equation 

dY 
dx 

x + a  
bo + b,x + b,x 2 y  

_ -  - (3.97) 

where a, b,, b,, b, are real (constant) numbers. According to the explicit values of 
these parameters and the domain of the variable x, the Pearson curves are of twelve 
different types. 

The basic relation, definihg the probability density of Pearson distribution, 
assumes the form 

(3.98) 

The type of distribution is determined by the values of the following quantities 

(3.99) 

where M,, M ,  and M4 are the second, the third and the fourth central moments 
(around the mean). For B1 = 0, B2 = 3 and k = 0 the Pearson distribution is identical 
with the normal distribution. The first and the third type curves are often used in 
the probabilistic analysis of hydrological data. 

Pearson dis t r ibut ion of the first type 

The first type is determined by the condition k < 0. The distribution is asymmetric, 

The first-type Pearson distribution density curve, also called beta distribution, 
unbounded at either side, and usually bell-shaped. 

may be expressed by the following analytic formula 

(3.100) 

Symbol B is used to denote the beta function (first kind Euler's integral) defined by 

Beta function, values of which are tabulated, is related to the function r(x) by the 
formula 

(3.102) 
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The mean value Ax), the standard deviation 4.) and two independent constants 
a, /? can be found in eqn. (3.100) while the auxiliary constant y simplifying the notation 
is connected with the constants a and /? by the relation 

(3.103) 

With the aid of a and /? we can also express both the skewness C, and the excess E: 

/ ? - a  
a + / ? + 2  

c, = 2y 

- 3  
2(a + a)' + a/?(a + /? - 6) 

(a + /? + 2)(a + /? + 3) 
E = 3y2 

(3.104) 

(3.105) 

The domain of the variable x is bounded on both sides, the lower boundary 
being [p(x) - ay ~ ( x ) ] ,  and the upper boundary being [p(x) + ay o(x)]. For a > 1, 
/? > 1 which is the most frequent case, the probability density curve f ( x )  is bell- 
shaped. With a = /? the curve is symmetric with respect to the ordinate of the cor- 
responding mean value p(x). For /? + 00 the first type curve turns into the third-type 
Pearson curve. 

The first-type Pearson curves may successfully be applied whenever the domain 
of variable is bounded on both sides. The advantage consists in the fact that we 
can choose the beginning of the curve, often choosing zero, and yet there are three 
independent parameters p(x), 4.) and S,  left. 

Pearson dis t r ibut ion of the third type 

The third type is recognizable from k = 00 or 2/?, = 3/?, + 6. The distribution 

The general analytical formula for the third-type Pearson curve is 
is asymmetric, bounded on one side, and usually bell-shaped. 

am2 exp [m a P ( X )  - a'] 
a 

[a  o(x) - p(x) + x ] ~ ' - '  exp [ - -XI (3.106) 
r (a2 )  aa2(x) 44 f ( x )  = 

where r denotes the gamma function. 

a constant a defining the skewness by the relation 
The curve depends on three parameters: the mean value p(x) the variance a(.) 

(3.107) 
2 c = -  

' a  

Under positive skewness the domain of the variable x is from [ d x )  - ao(x) ]  
to + 00, under negative skewness from - co to [p(x) - a ~ ( x ) ] .  For a tending to 
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infinity it holds that C, -, 0, and the curve becomes symmetric and turns to normal 
distribution with parameters p(x) and a(x), hence normal distribution is a special 
case of the Pearson distribution of the third type. The curve is bell-shaped whenever 
a' > 1, i.e., C, c 2. 

If C, > 0 the curve is decreasing, if C, = 2Cv the curve is increasing. 
If it holds that C,  > 0 under C, = 2Cv, the curve has its origin in zero. Hence the 

variable assumes positive values providing C, 2 2Cv. 

-f 

Fig. 3.12 Pearson curve of the third type 
(a) for standardized variable r ;  (b )  for xo > 0 

Excess E depends on C, according to the relation 

The third-type curve for standardized variable (Fig. 3.12a) is 

(3.108) 

(3.109) 

The domain of the standardized variable is from - a  to + 00 under a > 0, from 
-co to - a  under a < 0. 

Mode of the curve is 

1 
t =  -- 

a 

The inflexion oints exist only under a' > 1, their distance from the mode being 
f , / w r i n  both directions. 

The third-type curve is very general because it may be used to describe both asym- 
metric distributions with either positive or negative skewness and symmetric dis- 
tributions. When IC,( is close to zero, the third-type curve is close to the normal 
distribution. Both the frequency and distribution functions are tabulated in detail, 
hence they are easy to deal with. 
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The probability density of the Pearson distribution of the third type may, for 
convenience, be expressed by 

(3.110) 

where a is the distance between the mode and the origin of the curve, d is the distance 
between the ordinate of the centre of gravity and the mode, and x, is the minimum 
value of x (Fig. 3.12b). 

Moments of the distribution may be expressed by means of the parameters from 
equation (3.1 10) 

4.) = x, + a + d (3.111) 

1 
C ,  = - [d( a + d)]’’’ 44 

(3.1 12) 

(3.113) 

From these relations it follows that 

x, = 4.) (1 - 3) 
cs 

In almost all hydrological events it must hold that x,, 2 0 and therefore C ,  2 2Cv. 
Hence, the whole curve is situated in the domain of positive x’s; with C ,  = 2Cv the 
random variable could assume negative values as well, which is an impossible rule 
in hydrological events. 

Kritsky-Menkel’s three-parameter probabili ty dis t r ibut ion 

In order to describe annual river discharge in the U.S.S.R., a theoretical distribution 
is often used which was recommended by Kritsky and Menkel under the following 
assumptions: 

(a) the distribution function differs from zero on the interval (0, a); 
(b) the distribution function depends on three parameters, i.e., an arbitrary choice 

The analytic formula for the Kritsky-Menkel three-parameter distribution function 
of the first three moments must be possible. 

is (for x 2 0) in the form 

where X, y, b are the parameters. 
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For b = 1 the distribution function (3.114) is reduced to the third-type Pearson 
distribution with equality C, = 2C,, i.e., a two-parameter distribution. Reznikovski 
(1969) concluded, on the basis of investigations performed in the U.S.S.R., that for 
rivers with C, 5 0.5 and r 7 0.3 the relation C, = C," + 3C, according to equation 
(3.62) is closer to reality than the relation C, = 2C,, i.e., the log-normal 
distribution is more suitable than the third-type Pearson distribution in such cases. 

Exponential  probabili ty dis t r ibut ion 

The exceedance probability curve of exponential probability distribution is given 

P(z) = e-' (3.115) 

by the exponential function 

hence the distribution function is 

~ ( x )  = 1 - e-' (3.116) 

where z = f ( x ) .  
Various expressions of the variable z yield various types of exponential probability 

laws. The Goodrich exponential distribution was found suitable for analysing some 
flood-flow samples. 

Goodrich distribution is usually given by 

(3.117) 

(3.1 18) 

(3.119) 

The best way to estimate the constants k,  x' and a, is to express the exceedance 
probability curve in the Goodrich probability paper. The constant x' is chosen so 
that the empirical distribution in the Goodrich probability paper creates approxi- 
matelly a straight line (for P -, 1 the deviation may be a bit larger). 

By double-logarithming the equation (3.1 17), rewritten in the form 

we obtain 

1 1 
- (log k + log loge) (3.120) 
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The constant a determining the slope of the approximating line is equal to 

A log (X - x') 
a =  

A log (log i) (3.121) 

For the Goodrich probability chart, the scale of 1/P is double logarithmic 
(log log l/P), and the scale of (x - x') is logarithmic. 

The ordinate of the exceedance probability curve corresponding to P = 0.10, i.e., 
with log (log 1/P) = 0, determines the value log (x - x') = -a(log k + log loge) 
whence k can be calculated. For an arbitrary P, the corresponding x, is calculated 
from equation (3.120). 

In Czechoslovakia, V. Brofa succeeded in applying the Goodrich probability 
distribution to analyses of samples of all maximum peak discharges (not the annual 
maximum discharges for which some other distributions are more suitable). 

Binomial probabili ty dis t r ibut ion 

An asymmetric binomial distribution is frequently used in hydrological data 
processing. Explaining the nature of the binomial distribution, we must keep in 
mind that it is a distribution of a discrete random variable. 

In a sequence of independent trials performed under stable conditions (Bernoulli 
trials), we observe whether or not an even A occurs, the probability of which being p 
in every trial. Thus the probability 

p ( n , x )  = ( ; ) P . 4 . .  = (;)P'(l - P Y X  

here has the meaning of probability density, hence 

(3.122) 

(3.123) 

where x denotes the number of the occurrences of event A. 
The constants n, p are called parameters of the binomial distribution. 
The set of probabilities p(n, x) for x = 0, 1,2, ..., n, i.e., p(n,O),  p(n, l), p(n,  2), ... 

As these probabilities correspond to disjointed events, forming the complete 
. . ., p(n, n), is called binomial probability distribution. 

system of events, it follows that 
n 

(3.1 24) 

which may easily be checked because the values p(n, x) defined by eqn. (3.122) are 
the terms of the binomial expression (q + p)" from which their name was derived. 
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The mode of the binomial distribution is the value 2 corresponding to the greatest 
probability. As a rule, the binomial distribution has only one mode. The maximum 
value may, of course, correspond to either 0 or n, the probabilities p(n,x) either 
decrease or increase, respectively. Such cases may occur with small n and p close to 
either zero or one. With a large n, the mode is always somewhere in the central part 
of the distribution and the probabilities decrease in both directions from the mode. 

In order to facilitate the calculation of the moments of the binomial distribution, 
the so-called moment-generating function (P(E)  is introduced. This function is used 
to calculate the moments especially of a discrete random variable, and is defied 
as follows: 

(3.125) 

Summation concerns all possible values x = 0, 1,2, . . ., n. 
Let us suppose the sum to converge at least for suficiently small E. Then it holds that 

(3.126) 

The formula for calculating the kth order general moment is 
n 

mk(<) = C xtp, 

From eqn. (3.126) with E = 0 we obtain, substituting from eqn. (3.30), an important 

[see equation (3.30)] 
i =  1 

formula for calculating the general moments 

(3.127) 

Now we shall calculate the mean value and variance of the binomial distribulion 
with the aid of the moment-generating function. Substituting the formula (3.122) 
for the probability A x )  into (3.125) we obtain 

(3.128) 

The first two moments follow from relations (3.127) and (3.128) 

p(x) = m,(x)  = ( P ’ ( E ) I , = ~  = .(pee + q)n-l peElc=o = np  

m2(x) = ( ~ “ ( E ) I , = ~  = n(n - 1) (pee + q y p 2  p2e2‘ + np(pe& + q)”-’ ecle,o = 

(3.129) 

= n 2 p 2  - np2 + n p  = n2p2 + npq (3.130) 

The variance ~ ’ ( x )  is the second-order central moment M, which is given by 
M, = m, - ,u2(x). Hence it holds that 

.’(x) = n2p2  + npq - n2p2 = npq (3.1 31) 
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The distribution function is 

F ( X b )  = 1 dn, ‘ i )  
X i  6 X b  

(3.132) 

For xb = I I  it follows that: 

F ( n )  = f @(l - p)”- = ( p  + 1 - p)” = 1 
x=o 

[see equation (3.124)]. 
Equations (3.122) and (3.132) show that the distribution function F(xb) depends 

on the three parameters xb, n, p. Therefore, the construction of a table for F ( X b )  

is very complicated and the calculation for great n and xb is difficult. 
We shall, however, make use of the fact that for n + 00 the binomial distribution 

tends to the normal distribution. Therefore we shall determine F ( x b )  for large n 
approximately from the normal distribution. 

Poisson probabili ty dis t r ibut ion 

To explain the Poisson distribution law we again use the Bernoulli trial as it was 
introduced in connection with the binomial distribution. The Poisson distribution, 
also called the distribution of rare events, is well suited for a large number of in- 
dependent trials, the probability of occurrence of some event in each of them being 
relatively small. The distribution is tabulated in detail, because it depends on only 
one parameter. Its usefulness arises in cases where neither n nor p are known but 
their product, n p, is known, or may be estimated. 

Suppose the number of trials is growing and simultaneously the probability of 
occurrence of an event A is decreasing so that the mean number of occurrences is 
constant, i.e., 11 . p = A, where 1 is positive; then 

(3.1 3 3) 

Let us first calculate the probability that, in n trials, the event will not occur at all. 
Using (3.133) we can then rewrite eqn. (3.122) as 

p(n,O) = (1  - p)” = 1 - - ( ri>’ 
whence 

... 
2n 

(3.134) 
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If 

I 2  1 
-41 or p 4 -  
n J;; 

holds, we may reduce eqn. (3.134) to the first term and write 

p(n,O) e-A 

Similarly it follows that 

nP I 
d n ,  1) = np(1 - p)”-’ =-(I - p)” = -p(n,O) = I e - A  

I 
1 - -  

n 
1 - P  

and generally 

I” 
X !  X !  

p”(1 - p)”-” = -e-l n(n - 1) ... (n - x + 1) 
p(n, x) = 

(3.135) 

(3.136) 

(3.1 37) 

The result may be formulated as follows: Providing that number n is very large, 
the occurrence probability p of an event is very small so that the mean number of 
occurrences remains equal to a constant positive number 1, the probability p(n, x) 
for binomial distribution tends for every x = 0, 1, . . ., to the limit value 

1” 
X !  

p(I, x) = -e-l = f (4 (3.138) 

This asymptotic expression is sometimes called Poisson’s formula. It holds that 
co Axe-). f P(A x) = - - 1  - 

x = o  *=o x! 
(3.139) 

The parameters are calculated again with the aid of the moment-generating func- 
tion. Combining eqn. (3.138) with eqn. (3.125) we obtain 

OD e c x p  e- 1. 
44 = c Z e - 1  

x!  

- - e-Ae.lec 

* 1” I 2  
x = O X !  2! 

for C-=I+++-+ ... = e l  

whence according to eqns. (3.127) and (3.128), the general moments are given by 

q ( x )  = p ( x )  = ~ ‘ ( E ) I , = ~  = e - A  e l e  C~ec(e ,o  = I 
(3.140) 

m2(x) = ( P ” ( E ) J , = ~  = Ie-*eAecee(Aee + I ) I & = ~  = I + l2 
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hence 

+ )  = M ,  = m, - p 2  = 1 + A2 - 1, = 1 (3.141) 

From equation (3.140) and (3.141) we get the obvious identity between the mean 
value Ax) and the variance b2(x), which is characteristic for the Poisson probability 
distribution. 

The coefficient of skewness 

M3 1 1 c, = - = - = - 
G f l $  

y = - -  M4 3=-- 

is always positive because 1 is always positive. 

3A2 + 1 
The coefficient of excess 

1 3 = -  
c4(4 A2 1 

(3.1 42) 

(3.143) 

of the Poisson distribution is always positive, too. 

tribution function (i.e., the probability of a maximum of n occurrences) 
For calculating the probabilities for the Poisson distribution, as well as its dis- 

(3.144) 

tables (Reisenauer, 1970) have been elaborated. 

3.1.6 Estimates of exceedance probability curve parameters by means of quantiles 

Up to now, the method of moments has been used to determine the values of 
parameters Ax) ,  ~’(x), C,, C,, y in the appropriate types of distributions. 

Lately, using many random samples, the fit has been checked between the sample 
characteristics C, and C, and the respective values of parameters given by eqns. (3.49) 
and (3.50). 

The optimal estimates based on the random samples are greater than the cor- 
responding parameters. This is why it is sometimes recommended that the estimates 
of C, and C, should be calculated with the aid of quantiles. A quantile denotes the 
point chosen so that the distribution function assumes a prescribed value, e.g., 5%, 
25%, etc. 

The method is based on several values of quantiles obtained from the empirical 
curve (approximately constructed), and on the standardized deviations of exceedance 
probability curves @(Pi; C,) for the corresponding distribution, found in tables. The 
index of @ denotes the type of distribution (@* - binomial, @,, - log-normal, aG - 
Gumbel). The quantiles for fixed probabilities Pi are used taking into account the 
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relationship between the cumulative distribution function and the exceedance prob- 
ability curve - see Fig. 3.8. 

An approach essentially simplifying the calculation as compared with the com- 
plicated calculation based on equations (3.49) and (3.50), was elaborated by Alexeyev 
(1960). Only three points of the empirical curve, corresponding to PI = 574, Pz = 50% 
and P3 = 9574, are considered. 

Binomial dis t r ibut ion 

The calculation is described here in detail: 
1. The set of sample values (e.g., the average annual flows) are ranked in de- 

scending order of magnitude and the probabilities P are calculated according to 
Chegodayev. 

2. The empirical curve in the probability paper is approxinlated by a straight line 
or a continuous curve (curve fitting). From this curve we obtain three values for 
fixed characteristic probabilities, namely P = 5%, 50% and 95%, the values being 
denoted x5, ~ 5 0  and xg5. 

3. We calculate the auxiliary quantity S defined by 

x5 + x95 - 2x50 S =  
x5 - x95 

which is, according to Alexeyev, the function of sample skewness (Fig. 3.13). 

(3.145) 

7.0 

08 

'I, 06 

1 04 

02 

0.0 Fig. 3.13 The relation S = f(C,)for binomial distribution 
0 7 2 3 4 5  

cs - 
With binomial distribution it also holds that 

@ 5  + @95 - 2@50 
@ 5  - @95 

S =  (3.146) 

where Q5, @ 5 0  and @95 are values of QB(P, C,) obtained from Foster-Rybkin tables 
for P = 5%, 50% and 95%. 



130 

0.00 0.00 
-0.02 0.03 
-0.03 0.06 
-0.05 0.08 
-0.07 0.11 
-0.08 0.14 
-0.10 0.17 
-0.12 0.20 
-0.13 0.22 
-0.15 0.25 
-0.16 0.28 
-0.18 0.31 

Table 3.2 Auxiliary values to determine parameters of binomial distribution according 
to G. A. Alexeyev 

2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1 .8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

-0.21 0.37 
-0.22 0.39 
-0.24 0.42 
-0.25 0.45 
-0.27 0.48 
-0.28 0.51 
-0.29 0.54 
-0.31 0.57 
-0.32 0.59 
-0.33 0.63 
-0.34 0.64 
-0.35 0.67 
-0.36 0.69 
-0.37 0.72 

3.28 
3.28 
3.28 
3.27 
3.27 
3.26 
3.25 
3.24 
3.22 
3.21 
3.20 
3.17 
3.16 
3.14 
3.12 
3.09 
3.07 
3.04 
3.01 
2.98 
2.95 
2.92 
2.89 
2.86 
2.82 
2.79 
2.76 

4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 

2.74 
2.71 
2.68 
2.64 
2.62 
2.59 
2.56 
2.53 
2.50 
2.48 
2.45 
2.43 
2.41 
2.40 
2.38 
2.36 
2.34 
2.32 
2.30 
2.28 
2.26 
2.23 
2.21 
2.18 
2.15 
2.15 

~ 

-0.38 0.74 
-0.39 0.76 
-0.39 0.78 
-0.40 0.80 
-0.40 0.81 
-0.41 0.83 
-0.41 0.85 
-0.41 0.86 
-0.41 0.87 
-0.42 0.89 
-0.42 0.90 
-0.42 0.91 
-0.41 0.92 
-0.41 0.92 
-0.41 0.93 
-0.41 0.94 
-0.40 0.94 
-0.40 0.95 
-0.40 0.96 
-0.40 0.97 
-a40 0.97 
-0.39 0.98 
-0.39 0.98 
-0.38 0.98 
-0.38 0.98 
-0.37 0.98 

I - -  

S is obtained from Table 3.2 [according to equation (3.145)], along with the value 
which enable us to calculate other C, and other auxiliary values (9, - GgS), and 

characteristics of the binomial distribution. 

The standard deviation 
4. We calculate the following characteristics: 

xc - xoz 
7 -  s, = - 

9 s  - 9 9 5  

the mean value 

x = xso - s,Gso 

(3.147) 

(3.148) 
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- probability P [%I 10 ~ 

- probability P C%l 
Fig. 3.14 Brovkovich's probability paper (Pearson C, = 2C,) 

the coefficient of variation 

c = -  sx (3.149) 

We compare C, and C,; for theoretical correctness of the following stepwise relation, 
C, 2 2C, must be valid. 

, x  

5. From the general equation 

xp = x + s, @(P, c,) = $1 + c, @(P, c,)] (3.150) 

we calculate values of the random variable x for any exceedance probability P. The 
function @,(P, C,) is tabulated in detail. 

The problem may be solved also with the aid of the graphico-numerical method 
using the Brovkovich probability paper (Fig. 3.14). 

Log-normal dis t r ibut ion 

The approach is again based on quantiles corresponding to the probabilities 
P, = 574, Pz = 50% and P3 = 95%. Steps 1 and 2 are the same as for the binomial 
distribution. 
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3. We calculate an auxiliary quantity xo given by 

xo = (3.151) 
'5 -k '95 - 2x50  

and the standard deviation of a new variable y according to equation (3.61) 

x5 - xo 

x9s - xo 
sY = 0.305 log (3.152) 

4. We calculate values x, corresponding to various probability P's from the 

log (xp - xo) = log (XSO - XO) + sy @B(P, cs = 0) (3.153) 

Values of the function djB(P, 0) can be found in the tables mentioned above. 
The fit of the log-normal distribution to the investigated sample is checked by 

representing the exceedance probabilities curve in the logarithmic probability paper. 
If the sample points with coordinates (P,, x, - xo) are near a line, the log-normal 
distribution is well-suited. 

equation 

Gumbel  dis t r ibut ion 

The Gumbel distribution depends on two parameters a, /3 according to equation 
(3.93), and therefore only two quantiles are used to estimate the parameters, x5 
and xg5, corresponding to probabilities PI = 5% and P2 = 95%, respectively. 

Following steps 1 and 2, we determine the values x5  and xgS. The parameters a 
and p are calculated from the relations 

4.067 

x5 + x9s 
a =  (3.154) 

p = 0 . 2 7 ~ ~  + 0 . 7 3 ~ ~ ~  (3.155) 

The ordinate xp corresponding to various exceedance probabilities P may be 
calculated either from the relation 

1 

a 
xp = p + - z p  (3.156) 

where z p  is the standardized deviation from the mode according to the table, or from 
a general equation of type (3.150), substituting the values @@, C,) also according 
to the table (e.g., Votruba and Nachhzel, 1971). 

The other characteristics of equation (3.150) are given by 

X = 0 . 4 1 2 ~ ~  + 0 . 5 8 8 ~ ~ ~  

s, = 0.315(x5 - x ~ ~ )  

(3.157) 

(3.158) 
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Exponential  dis t r ibut ion 

Following steps 1 and 2, the values x,, x , ~  and x,, are obtained. 
Step 3. We calculate the auxiliary quantity 

s, = 
2logx,, - logx, - logx,, 

logx, - logx,, 

and the sample coefficient of skewness 

C,, = 7 . 1 5 ~ ~  

(3.159) 

(3.160) 

Th'e calculation continues according to whether C,, > 0 or C,, < 0 (see Votruba 
and Nachazel, 1971, p. 64). 

3.1.7 Tables and probability papers for constructing the exceedance probability 
curves 

An analytical formula for a probability distribution is usually very difficult to 
obtain, therefore numerical and graphical aids, such as tables and probability charts, 
are used for constructing exceedance probability curves. 

For the third type of Pearson distribution tables were constructed by E. E. Foster 
and S .  J. Rybkin. Rybkin's table, completed by B. I. Serpik, is very comprehensive 
(Alexeyev, 1960, pp. 136, 137). The values are calculated for p = 0.01% up to 100% 
and C,  = 0.0 up to 5.2 under C,  = 1 (Table 3.3). The table serves to determine the 
ordinates of the theoretical exceedance probabilities curve with given values K, C,, C,. 

In the row corresponding to a given value C,, the values @(p, C,)  for various ex- 
ceedance probabilities are found. The modulus factors k,  = xp/X or (directly) the 
ordinates x, of the exceeding probability curve are calculated from the relations 

(3.16 1) 

(3.162) 

Example:  The value of average annual flow corresponding t o p  = 95% is to be calculated, providing that 
the Pearson probability law holds, with Q. = 300 m3 s- ', C, = 0.29, C, = 0.8. 

For C,  = 0.8 and p = 95%, the value @(p, C,) = - 1.38 is found in the table; k,, = - 1.38.0.29 + 1 = 
= 0.60 or Q,,95 = [ - 1.38 '0.29 + 11. 300 = 180 m3 s - '  is calculated. 

Probabi l i ty  papers  

Exceedance probabilities curves represented in a coordinate system with a linear 
scale (especially for the horizontal axis P )  are not suitable because of inaccuracies 
which may occur for the extreme values of probability ( P  0, P + 1). Therefore, 
for a graphical description of both empirical and theoretical exceedance probability 
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Table 3.3 Deviations of ordinates for the binomial curve of probability exceedance - - - @(P, C,) 
xi - E 

(according to B. L. Serpik) 

Reliability 

0.01 0.1 0.5 1 2 3 5 10 20 25 30 
c, 

0.0 3.72 3.09 2.58 2.33 2.02 1.88 1.64 1.28 0.84 0.67 0.52 
0.1 3.94 3.23 2.67 2.40 2.11 1.92 1.67 1.29 0.84 0.66 0.51 
0.2 4.16 3.38 2.76 2.47 2.16 1.96 1.70 1.30 0.83 0.65 0.50 
0.3 4.38 3.52 2.86 2.54 2.21 2.00 1.72 1.31 0.82 0.64 0.48 
0.4 4.61 3.66 2.95 2.61 2.26 2.04 1.75 1.32 0.82 0.63 0.47 
0.5 4.83 3.81 3.04 2.68 2.31 2.08 1.77 1.32 0.81 0.62 0.46 

0.6 5.05 3.96 3.13 2.75 2.35 2.12 1.80 1.33 0.80 0.61 0.44 
0.7 5.28 4.10 3.22 2.82 2.40 2.15 1.82 1.33 0.79 0.59 0.43 
0.8 5.50 4.24 3.31 2.89 2.45 2.18 1.84 1.34 0.78 0.58 0.41 
0.9 5.73 4.38 3.40 2.96 2.50 2.22 1.86 1.34 0.77 0.57 0.40 
1 .o 5.96 4.53 3.49 3.02 2.54 2.25 1.88 1.34 0.76 0.55 0.38 

1.1 6.18 4.67 3.58 3.09 2.58 2.28 1.89 1.34 0.74 0.54 0.36 
1.2 6.41 4.81 3.66 3.15 2.62 2.31 1.92 1.34 0.73 0.52 0.35 
1.3 6.64 4.95 3.74 3.21 2.67 2.34 1.94 1.34 0.72 0.51 0.33 
1.4 6.87 5.09 3.83 3.27 2.71 2.37 1.95 1.34 0.71 0.49 0.31 
1.5 7.09 5.28 3.91 3.33 2.74 2.39 1.96 1.33 0.69 0.47 0.30 

1.6 7.31 5.37 3.99 3.39 2.78 2.42 1.97 1.33 0.68 0.46 0.28 
1.7 7.54 5.50 4.07 3.44 2.82 2.44 1.98 1.32 0.66 0.44 0.26 
1.8 7.76 5.64 4.15 3.50 2.85 2.46 1.99 1.32 0.64 0.42 0.24 
1.9 7.98 5.77 4.23 3.55 2.88 2.49 2.00 1.31 0.63 0.40 0.22 
2.0 8.21 5.91 4.30 3.60 2.91 2.51 2.00 1.30 0.61 0.39 0.20 

. 2.1 - 6.04 4.38 3.65 2.94 2.53 2.01 1.29 0.59 0.37 0.18 
2.2 6.14 4.46 3.68 2.95 2.54 2.02 1.27 0.57 0.35 0.16 
2.3 6.26 4.52 3.73 2.98 2.57 2.01 1.26 0.55 0.32 0.14 

2.5 6.50 4.66 3.82 3.05 2.62 2.00 1.23 0.50 0.27 0.10 

2.6 6.54 4.71 3.86 3.08 2.63 2.00 1.21 0.48 0.25 0.085 
2.7 6.75 4.80 3.92 3.10 2.64 2.00 1.19 0.46 0.24 0.070 
2.8 6.86 4.86 3.96 3.12 2.65 2.00 1.18 0.44 0.22 0.057 
2.9 7.00 4.91 4.01 3.12 2.66 1.99 1.15 0.41 0.20 0.041 
3.0 7.10 4.95 4.05 3.14 2.66 1.97 1.13 0.39 0.19 0.027 

3.1 7.23 5.01 4.09 3.14 2.66 1.97 1.11 0.37 0.17 0.010 

2.4 6.37 4.59 3.78 3.02 2.60 2.00 1.25 0.52 0.29 , 0.12 

3.2 7.35 5.08 4.11 3.14 2.66 1.96 1.09 0.35 0.15 -0.006 
3.3 7.44 5.14 4.15 3.14 2.66 1.95 1.08 0.33 0.13 -0.022 
3.4 7.54 5.19 4.18 3.15 2.66 1.94 1.06 0.31 0.11 -0.036 
3.5 7.64 5.25 4.21 3.16 2.66 1.93 1.04 0.29 0.085 -0.049 
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40 50 60 70 75 80 90 95 97 99 99.9 100 

0.25 0.00-0.25-0.52-0.67-0.84-1.28 -1.64 -1.88 -2.33 -3.09 --CO 

0.24 -0.02 -0.27 -0.53 -0.68 -0.85 -1.27 -1.61 -1.84 -2.25 -2.95 -20.0 
0.22 -0.03 -0.28 -0.55 -0.69 -0.85 -1.26 -1.58 -1.79 -2.18 -2.81 -10.0 
0.20 -0.05 -0.30 -0.56 -0.70 -0.85 -1.24 -1.55 -1.75 -2.10 -2.67 -6.67 
0.19 -0.07 -0.31 -0.57 -0.71 -0.85 -1.23 -1.52 -1.70 -2.03 -2.54 -5.00 
0.17 -0.08 -0.33 -0.58 -0.71 -0.85 -1.22 -1.49 -1.66 -1.96 -2.40 -4.00 

0.16 -0.10 -0.34 -0.59 -0.72 -0.85 -1.20 -1.45 -1.61 -1.88 -2.27 -3.33 
0.14 -0.12 -0.36 -0.60 -0.72 -0.85 -1.18 -1.42 -1.57 -1.81 -2.14 -2.86 
0.12 -0.13 -0.37 -0.60 -0.73 -0.86 -1.17 -1.38 -1.52 -1.74 -2.02 -2.50 
0.11 -0.15 -0.38 -0.61 -0.73 -0.85 -1.15 -1.35 -1.47 -1.66 -1.90 -2.22 
0.09 -0.16 -0.39 -0.62 -0.73 -0.85 -1.13 -1.32 -1.42 -1.59 -1.79 -2.00 

0.07 -0.18 -0.41 -0.62 -0.74 -0.85 -1.10 -1.28 -1.38 -1.52 -1.68 -1.82 
0.05 -0.19 -0.42 -0.63 -0.74 -0.84 -1.08 -1.24 -1.33 -1.45 -1.58 -1.67 
0.04 -0.21 -0.43 -0.63 -0.74 -0.84 -1.06 -1.20 -1.28 -1.38 -1.48 -1.54 
0.02 -0.22 -0.44 -0.64 -0.73 -0.83 -1.04 -1.17 -1.23 -1.32 -1.39 -1.43 
0.00 -0.24 -0.45 -0.64 -0.73 -0.82 -1.02 -1.13 -1.19 -1.26 -1.31 -1.33 

-0.02 -0.25 -0.46 -0.64 -0.73 -0.81 -0.99 -1.10 -1.14 -1.20 -1.24 -1.25 
-0.03 -0.27 -0.47 -0.64 -0.72 -0.81 -0.97 -1.06 -1.10 -1.14 -1.17 -1.18 
-0.05 -0.28 -0.48 -0.64 -0.72 -0.80 -0.94 -1.02 -1.06 -1.09 -1.11 -1.11 
-0.07 -0.29 -0.48 -0.64 -0.72 -0.79 -0.92 -0.98 -1.01 -1.04 - 1.05 -1.05 
-0.08 -0.31 -0.49 -0.64 -0.71 -0.78 -0.90 -0.95 -0.97 -0.99 -1.00 -1.00 

-0.10 -0.32 -0.50 -0.64 -0.70 -0.76 -0.886 -0.914 -0.930 -0.945 -0.952 -0.952 
-0.12 -0.33 -0.50 -0.64 -0.69 -0.75 -0.842 -0.882 -0.895 -0.905 -0.910 -0.910 
-0.13 -0.34 -0.50 -0.63 -0.68 -0.74 -0.815 -0.850 -0.860 -0.867 -0.870 -0.870 
-0.14 -0.35 -0.51 -0.62 -0.67 -0.72 -0.792 -0.820 -0.826 -0.830 -0.833 -0.833 
-0.16 -0.36 -0.51 -0.62 -0.66 -0.71 -0.768 -0.790 -0.795 -0.800 -0.800 -0.800 

-0.17 -0.37 -0.51 -0.61 -0.66 -0.70 -0.746 -0.764 -0.766 -0.770 -0.770 -0.770 
-0.18 -0.38 -0.51 -0.61 -0.65 -0.68 -0.724 -0.736 -0.739 -0.740 -0.740 -0.740 
-0.20 -0.39 -0.51 -0.60 -0.64 -0.67 -0.703 -0.711 -0.714 -0.715 -0.715 -0.715 
-0.21 -0.39 -0.51 -0.60 -0.63 -0.65 -0.681 -0.689 -0.690 -0.690 -0.690 -0.690 
-0.22 -0.40 -0.51 -0.59 -0.62 -0.64 -0.661 -0.665 -0.666 -0.666 -0.667 -0.667 

-0.23 -0.40 -0.51 -0.58 -0.60 -0.62 -0.641 -0.645 -0.646 -0.646 -0,646 -0.646 
-0.25 -0.41 -0.51 -0.57 -0.59 -0.61 -0.621 -0.625 -0.625 -0.625 -0.625 -0.625 
-0.26 -0.41 -0.50 -0.56 -0.58 -0.59 -0.605 -0.606 -0.606 -0.606 -0.607 -0.607 
-0.27 -0.41 -0.50 -0.55 -0.57 -0.58 -0.586 -0.588 -0.588 -0.588 -0.588 -0.588 
-0.28 -0.41 -0.50 -0.54 -0.55 -0.56 -0.570 -0.571 -0.571 -0.571 -0.572 -0.572 
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Table 3.3 (continued) 

Reliability 

0.01 0.1 0.5 1 2 3 5 10 20 25 30 
c, 

3.6 7.72 5.30 4.24 3.17 2.66 1.93 1.03 0.28 0.064 -0.072 
3.7 7.86 5.35 4.26 3.18 2.66 1.91 1.01 0.26 0.048 -0.084 
3.8 7.97 5.40 4.29 3.18 2.65 1.90 1.00 0.24 0.032 -0.095 
3.9 8.08 5.45 4.32 3.20 2.65 1.90 0.98 0.23 0.020 -0.11 
4.0 8.17 5.50 4.34 3.20 2.65 1.90 0.96 0.21 0.010 -0.12 

4.1 8.29 5.55 4.36 3.22 2.65 1.89 0.95 0.20 O.Oo0 -0.13 
4.2 8.38 5.60 4.39 3.24 2.64 1.88 0.93 0.09 -0.010 -0.13 
4.3 8.49 5.65 4.40 3.24 2.64 1.87 0.92 0.17 -0.021 -0.14 
4.4 8.60 5.69 4.42 3.25 2.63 1.86 0.91 0.15 -0.032 -0.15 
4.5 8.69 5.74 4.44 3.26 2.62 1.85 0.89 0.14 -0.042 -0.16 

4.6 8.79 5.79 4.46 3.21 2.62 1.84 0.87 0.13 -0.052 -0.17 
4.7 8.89 5.84 4.49 3.28 2.61 1.83 0.85 0.11 -0.064 -0.18 
4.8 8.96. 5.89 4.50 3.29 2.60 1.81 0.82 . 0.10 -0.075 -0.19 
4.9 9.04 5.90 4.51 3.30 2.60 1.80 0.80 0.084 -0.087 -0.19 
5.0 9.12 5.94 4.54 3.32 2.60 1.78 0.78 0.068 -0.099 -0.20 
5.1 9.20 5.98 4.57 3.32 2.60 1.76 0.76 0.051 -0.11 -0.21 
5.2 9.27 6.02 4.59 3.33 2.60 1.74 0.73 0.035 -0.12 -0.21 

curves (or distribution functions), and for graphical statistical analysis (extrapolation, 
graphico-numerical estimations of distribution parameters, etc.), we use papers with 
a special scale typical to the increasing scale for the probabilities P tending to the 
extreme values. Thus the exceedance probabilities curve is represented by a straight 
line, or by a line with low curvature. In the probability paper, corresponding to a prob- 
ability distribution, the theoretical exceedance probabilities curve of the distribution 
is represented by a straight line. Therefore the probability paper is chosen according 
to which distribution we presume that the random sample is from. 

The probability paper of the normal distribution, having a linear vertical scale, 
is also called normal probability paper. 

The probability paper of the log-normal distribution differs from the preceding 
one by a logarithmic vertical scale. The log-normal curves are represented as straight 
lines providing the relation C, = 3Cv + C: holds. 

The same vertical scale, but a different horizontal scale for the relative values of 
the variable ki = xi/X,  correspond to Brovkovich’s probability paper. Here, straight 
lines represent all binomial distribution curves, providing the relation C ,  = 2Cv 
holds. 
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40 50 60 70 75 80 90 95 97 99 99.9 100 

-0.28 -0.42 -0.49 -0.54 -0.54 -0.55 -0.555 .-0.556 -0.556 -0.556 -0.556 -0.556 
-0.29 -0.42 -0.48 -0.52 -0.53 -0.54 -0.541 -0.541 -0.541 -0.541 -0.541 -0.541 
-0.30 -0.42 -0.48 -0.51 -0.52 -0.52 -0.526 -0.526 -0.526 -0.526 -0.527 -0.527 
-0.30 -0.41 -0.47 -0.50 -0.51 -0.51 -0.513 -0.513 -0.513 -0.513 -0.513 -0.513 
-0.31 -0.41 -0.46 -0.49 -0.49 -0.50 -0.500 -0.500 -0.500 -0.500 -0.500 -0.500 

-0.31 -0.41 -0.46 -0.48 -0.484 -0.486 -0.487 -0.487 -0.487 -0.488 -0.488 -0.488 
-0.31 -0.41 -0.45 -0.47 -0.473 -0.475 -0.476 -0.476 -0.476 -0.477 -0.477 -0.477 
-0.32 -0.40 -0.44 -0.46 -0.462 -0.465 -0.465 -0.465 -0.465 -0.465 -0.465 -0.465 
-0.32 -0.40 -0.44 -0.451 -0.454 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455 
-0.32 -0.40 -0.43 -0.441 -0.444 -0.445 -0.445 -0.445 -0.445 -0.445 -0.445 -0.445 

-0.32 -0.40 -0.42 -0.432 -0.434 -0.435 -0.435 -0.435 -0.435 -0.435 -0.435 -0.435 
-0.32 -0.40 -0.42 -0.424 -0.425 -0.426 -0.426 -0.426 -0.426 -0.426 -0.426 -0.426 
-0.32 -0.39 -0.41 -0.416 -0.416 -0.416 -0.416 -0.416 -0.416 -0.417 -0.417 -0.417 
-0.33 -0.386 -0.401 -0.407 -0.407 -0.407 -0.408 -0.408 -0.408 -0.408 -0.408 -0.408 
-0.33 -0.380 -0.395 -0.399 -0.400 -0.400 -0.400 -0.400 -0.400 -0.400 -0.400 -0.400 
-0.33 -0.376 -0.388 -0.391 -0.392 -0.392 -0.392 -0.392 -0.392 -0.392 -0.393 -0.393 
-0.33 -0.370 -0.382 -0.384 -0.385 -0.385 -0.385 -0.385 -0.385 -0.385 -0.385 -0.385 

Using the horizontal scale linearizing the distribution of the standardized z, we 
obtain the Gumbel probability paper, the vertical scale of which is linear. 

The Frtchet probability paper differs from the preceding one by a logarithmic 
vertical scale. 

The horizontal scale of the Goodrich probability paper is log log 1/P' and the 
vertical is log x. 

The probability papers of the normal Gauss-Laplace distribution (and hence that 
of the log-normal one which has the same horizontal scale), the Gumbel distribution 
(hence the Frkchet distribution), and the Goodrich distribution may be constructed 
for probabilities in the range from 0.01% to 99.99%. 

Brovkovichs paper serves to illustrate the application of probability papers. The 
empirical distribution is approximated by a straight line tending to the same value 
C ,  in the appropriate scales both on the left and right sides of the chart. 

Brovkovich's paper may be used to check the correct calculation of C,. If the 
straight line, corresponding to the estimate of C,, approximates the empirical dis- 
tribution well, then the calculation of C, is correct, if not, it is incorrect. 



Table 3.4 Probability distributions used in water management c- 
W 

Type of Density f ( x )  
distribution Distribution function F(x) 

Domain of Parameters Mean 
variable value p 

normal 
(Gauss-Laplace) 

1 
f ( t )  = -= e-''12 standardized normal 

J2n 

3parameters 
lognormal F(x) = A r  e-yz dy 
(Gauss-Gibrat) Jn - m  

1 4parameters 

(Johnson) 4 y )  exp rz) JG 
log-normal f ( x )  = 

b - x  

3parameters 
exponential 
(Weibull) 

2parameters f ( x )  = e-'exp(-e-3 
double exponential 

f(x) = ab(x - xoP-' exp [-S(x - xoP1 

~ ( x )  = I - exp [ -b(x - xop] 

~ ( x )  = exp ( -e-y) 

(GUUibel) Y = a(x - 8) 

- w t o + w  &a 

- - m t o + w  - 

0 to +cc 

a to b 

xo to +-m a.b.x,  

- w t o + w  4 b  

0 

xo + 1 r (T) a + l  

Vs 

0.577 
8 + -  



Zparameters f - y l  - .)8-’ 

(Pearson I) B(a9 B) 
beta-distribution f ( z )  = 

@ t o  1 a. B a 

a + B  a > 0 ; B > 0  

x - x o  
x o + a + d  

1 
gamma-distribution f ( x )  = ( x  - xoy/d exp (- 7) a. to + co a, d,  xo 
Pearson I11 

d ( i  + i)r(i + 1) 

binomial f ( x )  = ( : ) P 1 4 . - x  0 5 x < n  n, P nP 

4 = 1 - p  

Poisson f ( x )  = -e-A 0sxsco 1. 1 
P 
X !  

Student 

m (number 
of degrees 
of freedom) 

m 0 to +co 

m (number 

of freedom) 
- w  to +a ofdegrees 0 

Fisher (2) logarithmic transformation of Fdistribution 

z = + l g F  

-co to +co m,,m,(degrees rn, 
for m, > 2 of freedom) 3 



Table 3.4 (continued) 

Type of 
distribution 

normal 
(Gauss-Laplace) 

standardized 
normal 

3parameters 
log-normal 
(Gauss-Gibrat) 

Zparameters 
log-normal 
(Ven-Te-Chow) 

4parameters 
log-normal 
(Johnson) 

3parameters 
exponential 
(Weibull) 

Zparameters x 2  
double exponential - 

6a2 (Gumbel) 

Variance 
cT2 

cT2 

1 

p2(y) (ea2(y) - 1 ) 

Skewness 

Cs 

0 

8 

3C,(x) + cg(x) 

Note 

xo - close to min. observed value 

y = l n x  

x - a  
y =In- 

6 - x  

- 1.14 (const.) 

aB 

(a + BIZ (a + B + 1 )  

2parameters 
beta-distribution 
(Pearson I) 



gamma distribution 
(Pearson 111) 

d(a + d )  
' d  J z  xo - min. value of x 

a - distance from the mode to the origin 

d -distance from the mode to the centre 
of gravity 

binomial 

Poisson 

x z  

Student 

Snedecor ( F )  

Fisher (z) 

"PY 

A 

2m 

m 

m - 2  

1 - 2p __ 
"PY 

2 J I  m 

0 

asymmetric 

rn: 2(m1 + rn, - 2) 

(mz - 2)2 m,(m,  - 4) 
asymmetric 

1 = p n , I > O  

for m --t rn close to normal 

independent variables u, u are 
distributed 1' 

more symmetric than Fdistribution 

for rn, >.4 
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3.1.8 Applicability of various probability distributions 

The suitability of applying certain probability distributions (summary in Table 3.4) 
to a given sample is most effectively checked by marking several points on a prob- 
ability paper; the paper is chosen so that the points are close to a straight line. 

- X  - x  

a) I 

Fig. 3.15 Typical shape of probability density 
of 
(a) Pearson, three parameter, log-normal, 
Gumbel and Frtchet distribution; (b) ex- 
ponential distribution 

Fig. 3.16 Frequency distribution (histograms) 
of flood maxima on the Otava river at Pisek 
(1931-1960) 
(a) annual; (b) thirty largest floods 

The exponential distribution differs essentially from the other mentioned dis- 
tributions by the course of the probability density y = f (x). This curve assumes its 
maximum (mode) at the point x’ to which the exceedance probability P = 1 cor- 
responds. (Fig. 3.15b); the probability density of the Pearson, log-normal, Gumbel 
arld other distributions at first increases up to the mode then decreases (Fig. 3.15a). 
For example, the sample of observations of maximum flood discharges represented 
by annual maxima on the Otava river in Pisek from 1931 to 1960 yields a frequency 
distribution (histogram) (Fig. 3.16a) corresponding to the theoretical distribution in 
Fig. 3.15a. The samples of the thirty greatest observed flow maxima in the same 
period, however, have a distribution (Fig. 3.16b) corresponding to exponential law 
(Fig. 3.15). 

In spite of being similar in form, the probability density functions y = f ( x )  of 
various distribution laws differ essentially, namely in values of the radius of asym- 
metry b = Z - 2, the frequency of the mode ymax = f (a), and the asymptotic be- 
haviour for P(x)  + 0. The latter has a great influence on the extrapolation of the 
exceedance probability curve towards the extreme values. The convergence is very 
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slow in case of the Frichet distribution, as well as in the case of the Galton dis- 
tribution. 

In water management the average annual flows and maximum flood discharges 
are most frequently analysed by means of statistics. Alexeyev (1960) stated that in 
the case of average annual flows, the use of the binomial, the three-parameter (Kritsky 
and Menkel), and the log-normal distributions yield approximately the same 
results. For the maximum annual flood discharges the three parameter and the log- 
normal distributions are recommended. 

In Czechoslovakia, particularly, distributions of all the maxima correspond, due to their nature, to the 
exponential distribution laws; the more general Goodrich exponential law is the most suitable. 

The theoretical distribution law may be chosen from among those mentioned 
above, to fit the sample values. Extrapolation of the curves out of the range of the 
observed values towards the extreme values of probability P = 0 and P = 1, presumes 
an agreement between the theoretical and the empirical laws. The uncertainty de- 
creases with the growing number of observations, but cannot be avoided completely 
because it is impossible to obtain sfliciently long series of observations to determine 
the probabilities of extreme values reliably. Therefore, the extrapolated values have 
only a conventional meaning; the advantage is that they are unambiguous for the 
chosen conditions. 

3.1.9 Accuracy of statistical characteristics in water management 

Let us evaluate the accuracy of the most frequently used statistical characteristics 

(a) long-term average (modulus), equation (3.47) 
in hydrology and water management which are 

(b) sample standard deviation, equation (3.48) 

S =  
l i = 1  

(c) sample coefficient of variation, equation (3.49) 

I n  2 (ki - 1)2 
i =  1 J n - 1  

c, = 
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(d) sample coefficient of skewness, equation (3.51) 
” 

(e) sample coefficient of excess, equation (3.46) 

The form of the exceedance probabilities curve is influenced the most by C,, less 
by C, and even less by the excess E (Fig. 3.17). The sample coefficient of variation 
C, = 0 corresponds to a sample consisting of values mutually identical; increasing 
C, means that the sample values differ essentially from the average. Figure 3.17d 

d)  2 75 
2.00 250 
I 80 225 
I60 200 
1.40 1.75 

z 120 .L: 2 5 0  
I25 -x 

050 

QDO 
- Q25 
-am 
- 075 

0.25 
0.40 t 
a20 
m 

100 O W 2 0  50 
cs to  -P [%I -PC%7 

Fig. 3.17 Influence of C,, C,  and E on the shape of the Pearson type Ill exceedance probability curve 
(a) influence of C , ( q =  0); (b) C, (C, = 0.5); (c) graphic illustration of positive and negative skewness; 

(d)  influence of E (C, = 0.5, C, = 0) 

shows both positive skewness (C, > 0, the mode to the left of the mean) and negative 
skewness (C, < 0, the mode to the right of the mean). On the diagram (Fig. 3.17b), 
a graphical descriptions of the curves with C, = 0.5 is given for three different values 
of C,. The course of the curves is less dissimilar than in Fig. 3.17a, especially in the 
middle part. The greatest difference can be observed between the respective ordinates 
corresponding to the extreme values of P .  Greater values of C, yield greater values 
of the end ordinates. The curves corresponding to the smaller values of C, are more 
suitable from the low flow period viewpoint. Therefore, as a rule, the minimum 
admissible value of C, is chosen if the series of observations is not long enough to 
provide a reliable calculation of C,. 
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From Foster’s expression C, = 2b/C, (Morozov, vol. I, 1954) it follows that for 

c, 2 2cv (3.163) 

The upper boundary follows from the equation of the Pearson type I11 curve 

the flows the lower boundary of C, is 

(3.164) 

The relation C, = 2C, is often used; it results from the theory of binomial dis- 
tribution curves. The values of C, might, however, be smaller, close to zero or even 
negative, or on the other hand much greater. It is recommended not to insist strictly 
on the Foster relation C, 2 2C, and to choose according to circums!ances, even 

With C, < 2Cv the binomial distribution curve may, for a greater dependability 
of P, in case the of flows, have unrealistic negative values of k. 

The accuracy of statistical characteristics is influenced not only by the observation 
time, but also by the variability of flows. 

The coefficient of variation of annual runoff for most rivers is in the range of 
0.10 to 1.20. 

The influence of the number of observations n and the coefficient of variation C, 
on the accuracy of the characteristics of runoff (X, s, C,, C, and E) is given by estimating 
their standard errors (Votruba - BroZa, 1966, p. 82). 

In order to illustrate the above, Table 3.5 shows the standard errors of all the 
statistical characteristics under C, = 0.1 and 1.0, providing that n = 50, C, = 2C, 
and E = $: = 6Ct. 

c, c 2c,. 

Table 3.5 Standard errors of statistical characteristics i, a, C, C,, E for number 
of observations n = 50 

C“ 0; [“XI a,* %“ [“A1 %. [“A1 aE PA1 

0.1 1.4 10 149 1400 

1 .o 14.0 20 60 210 

The real hydrological series of many Czechoslovak rivers are sufficiently accurate 
to determine the characteristics x, s and C,; the errors ac, and especially aE are, how- 
ever, too great. The calculations above are based on the assumption that the observed 
random variables are mutually independent. If the assumption is not fulfilled the 
errors are even greater. 
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In dry countries there are rivers that in some years have zero runoff, hence cor- 
responding to an exceedance probability of less than 100%. It therefore holds that 
C, < 2C,; according to the requirement of agreement between the theoretical and 
the empirical distributions, we choose as a rule C, = 1.5CV or C, = C, (Voskresenski, 
1956). 

The value C, may be influenced, even for very long series, by one highly extreme 
year, the theoretical probability of its occurrence being too small in a series of a given 
length (e.g., W, of the extraordinarily high water year 1941 in Czech and Moravian 
rivers). Svoboda (1964) used the 110 year runoff series obtained in DeEin on the Labe 
to calculate the long-term values of the coefficient of variation of annual runoff 
of Czech and Moravian rivers on the basis of shorter series of observations. 

For C, and C, empirical formulae were derived, applicable for preliminary cal- 
culations or for very short series. For Czechoslovak rivers the derivations were made 
by A. Bratranek, Dub (1953), Svoboda (1963); see also Dub and Nemec (1969). 

3.1.10 Evaluation of' goodness-of-fit between empirical and theoretical distributions 

When investigating the same quantity, but under different conditions (e.g., average 
annual flows, maximum peak discharges, flood volumes, etc.), by means of the prob- 
ability theory, we cannot estimate the type of theoretical probability distribution 
unambiguously. Thus, the uncertainty contained in the estimate gives rise to the 
question as to what extent the chosen theoretical distribution agrees with the em- 
pirically obtained quantities. 

Using the same coordinate system for a graphical description of both the histogram 
of the sample and the theoretical frequency function, we obtain the most illustrative 
idea, at least qualitatively, about the agreement between the theoretical and the 
empirical distributions ; less illustrative is the conception of the table of numerical 
empirical values of frequency ni of a respective class interval and theoretical values 
nfi where n is the number of elements of the sample, fi is a part of the area limited 
by the theoretical distribution curve within the limits of the respective interval. 

We now proceed to solve the problem of testing the hypothesis that data form 
a sample of a random variable 5 with the distribution P(x)  of a given type. Such tests 
are called tests of goodness offi t ,  and are based on a choice of a certain measure of 
deviation between the theoretical (hypothetical) and the empirical distributions. 
If in the case investigated the deviation exceeds a fixed level, the hypothesis is rejected, 
and vice-versa. The tests most frequently used are the x2-test and the Kolmogorov- 
Smirnov test. 

Applying the x2 test introduced by Pearson, we calculate the quantity 

(3.165) 
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and compare it with the value x,” for m degrees of freedom and small level p (usually 
5% or 1%). The number of degrees of freedom is 

m = I - c - 1  (3.166) 

where I is the number of classes into which the space of the variable is divided, 
and c is the number of sample characteristics used to estimate the unknown para- 
meters of the distribution j (x) .  

With x2 c xf the agreement between the distributions is considered to be sufficient, 
with x 2  > x j  it is not. Using this test we must bear in mind that it should hold if 
nA 2 5. As this condition might not be fulfilled, especially for the outer classes, we 
pool two or three of them if necessary. 

The agreement between the distributions is tested very simply with the aid of the 
Kolmogorou-Smirnov test, based on the probability 

P{max IF , (x , )  - F(XJ  > D,(n)} = a (3.167) 

Tuhle 3.6 Critical values D,(n) of the Kolmogorov-Smirnov test 

n a = 0.05 a = 0.01 a = 0.05 u = 0.01 

1 

.I 

4 
5 
6 
7 
8 
9 

10 
1 1  
I2  
13 
14 
15 
16 
17 
18 
19 
20 

? - 
0.975 
0.842 
0.708 
0.624 
0.563 
0.519 
0.483 
0.454 
0.430 
0.409 
0.39 I 
0.375 
0.36 1 
0.349 
0.338 
0.327 
0.318 
0.309 
0.301 
0.294 

0.995 
0.929 
0.829 
0.734 
0.669 
0.617 
0.576 
0.542 
0.513 
0.489 
0.468 
0.449 
0.432 
0.418 
0.404 
0.392 
0.381 
0.371 
0.361 
0.352 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
50 
60 

over 60 

0.287 
0.281 
0.275 
0.269 
0.264 
0.259 
0.254 
0.250 
0.246 
0.242 
0.238 
0.234 
0.23 1 
0.227 
0.224 
0.221 
0.2 18 
0.2 15 
0.213 
0.210 
0.190 
0.175 
1.358 ‘ - 

Ji 

0.344 
0.337 
0.330 
0.323 
0.317 
0.31 1 
0.305 
0.300 
0.295 
0.290 
0.285 
0.281 
0.277 
0.273 
0.269 
0.265 
0.262 
0.258 
0.255 
0.252 
0.228 
0.210 
1.628 - 
Jrr 
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where the expression max IF&) - F(xi)( means the maximum value of the dif- 
ference between the theoretical and the empirical distribution functions ; the test 
criterion Du(n) depends on the level a (usually a = 5% or 1%) and the number of 
observations. With n > 60 it holds that 

1.358 
Dub) = J;r for a = 5% (3.168) 

D,(n) = J;r for a = 1% (3.169) 

If the calculated value D = max IF,(xi) - F(xi)l exceeds the tabulated value D,(n) 
(Table 3.6), the hypothesis about the agreement between the theoretical and the 
empirical distributions is rejected on the given level of significance (the deviation 
between the theoretical and the empirical distributions is statistically significant). 

Statistical estimation of probability distribution parameters is one of the most 
important parts of mathematical statistics. 

So-called sampling distributions of the sample characteristics are used for the 
estimation, namely 

- x2  distribution 
- Student distribution 
- F-distribution (Snedecor) 
- Fisher distribution. 

Either point or interval estimates are used to estimate the mean and the variance. 
The interval estimate is more suitable as it also provides the accuracy of the result. 
The accuracy depends on the number n of the sample values. A frequent problem 
is what the number n should be for the unknown parameter to be estimated with 
a certain (chosen in advance) maximum permissible error or accuracy. The estimated 
values of parameters can be checked (tested) if the distribution law is considered as 
known. 

1.628 

3.1.1 1 Random processes and sequences in hydrology and water management 

In a random (stochastic) process, the random variable X depends on a parameter 
which, as a rule, is the time t. If the variable X is continuous in time we use the term 
“random process”, if the parameter assumes only integers “random sequence” is 
used. The following considerations for random processes are also valid for random 
sequences. 

Just as a random variable is characterized by its distribution function F(x)  and 
frequency function f ( x ) ,  a random process can similarly be characterized just by 
adding the variable parameter as another argument, hence, e.g., F(x,  t). 
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Figure 3.18 gives a graphical description of several realizations x(’)(t), x(’)(t), . . . 
..., x(k)(t) of a random process X(t).  For a fixed value of parameter t = t ,  these 
realizations can be considered as a sample from a random variable which will be 
denoted by x 1  in agreement with the index oft,. The sample values x(’)(t,),  x(’)(t,), ... 
. . ., x(k)(ti) are denoted in the figure by 1,2, . . ., k. We calculate the number m of values 
less than or equal to, a given value x,. The relative frequency P = m/k is a function 

Fig. 3.18 Graph of several realizations of 
\,,,---p a random process 

of x 1  and estimates the probability of the random variable X, being less than or equal 
to x,. Hence, the distribution function of the random variable X, may be written in 
a form similar,to equation (3.18): 

(3.170) F(x , )  = P(Xl  4 xl )  

This distribution function characterizing the random process is written as 

q x , ,  t , )  = p ( x ,  5 x1) (3.171) 

and is called the first (one-dimensional) distribution function of a random process; it 
depends on the given parameter (time) t ,  and level x,. 

The first probability density of a random process is 

(3.172) 

The random process is characterized at a fixed time (in static way) by (3.171) and 
(3.172). We may, however, simultaneously fix another value of parameter t,. 

The second (two-dimensional) distribution function of a random process is given by 

& ( X I ,  r ,  ; x,,  t z )  = p ( x ,  5 x , ;  x2 4 x,) (3.173) 

and denotes the probability of the random process not exceeding the value x ,  at 
time t = t ,  and simultaneously not exceeding the value x2 at time t = t , .  

The second probability density of the random process is 

(3.174) 
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Analogously, the n-dimensional distribution function may be derived, expressing 
the probability of the random process X(t) not exceeding the levels x,, x2, .. ., x, in 
the n values of parameter t , , t , ,  . . ., in, respectively. 

In problems of water management the first and second-order distributions are 
usually sufficient. Similarly to  the case of random variables, we use certain numerical 
characteristics of’ random process, namely 

(a) the first-order general moment determining the mean value of the random 
process 

m, [x(t)l= 1- ; fl (x9 r )  dx = p(t) ; (3.175) 

(b) the second-order central moment determining the variance of the random 

m 

process 
m 

M,[X(r)] = j-? - p)’j,(x, t)dx = m, - mf = a,(?) (3.176) 

(c) the first-order product general moment determining the correlation function 

m,[X(r,) X(t,)] = jm jm XIX2 f,(X,, f , ;  x2.tz) dx, dx, = R(t , ,  f 2 )  (3.177) 

The investigation of the random processes is much simpler if they are stationary 

A random process is stationary if all the finite-dimensional densities remain the 

of the random process 

-m  - m  

and ergodic. 

same whenever an arbitrary T is added to each parameter, hence 

(3.178) 

In our investigations it will be sufficient to  check the first- and the second-order 
densities. 

Similarly, only the invariance of the first and the second distribution functions 
is usually checked, and consequently that of their numerical characteristics - the 
mean value eqn. (3.175) and the variance eqn. (3.176) which are constant in the case 
of a stationary process, and the correlation function eqn. (3.177) which turns to 
a function of a unique time parameter. All random processes shown in Fig. 3.18 are 
stationary. 

Non-stationary random processes show a certain trend, e.g., either decreasing or 
increasing the mean value or variance. As an example of a non-stationary random 
process let us mention the time series of flows in a river site where water is withdrawn 
for irrigation, with a successive growth of the irrigated area. 

Since about 1975 we have been studying theoretically the non-stationary phenom- 
ena in hydrology and their consequences for the design of reservoirs (Nachrizel and 
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Patera, 1975; Nachazel, 1976). Since 1976 the non-stationarity has been examined 
in the Ohie basin. The non-stationarity may either grow continuously due to man’s 
interference in nature, or it may arise suddenly, e.g., as a consequence of building 
a large new reservoir on a river. 

The most significant non-stationarity lies in water demands which are quickly 
and progressively growing; in water management plans and projects this must not 
be overlooked. In the future, the non-stationarity of the hydrological quantities will 
also have to be taken into account. 

A random process is ergodic if the average of sufficiently many values in the re- 
alization of the process is close to the population mean value, with a probability close 
to one. In Fig. 3.18, the processes represented by the full line are stationary ergodic, 
those represented by hatched lines are stationary non-ergodic. 

In the case of an ergodic process, a large number of realizations need not be in- 
vestigated, a single long one is sufficient. The assumptions of stationarity and er- 
godicity enable us to consider one realization as representative for many others. 
The fulfilment of the assumptions may be checked only with a very long series which 
may be divided into several parts and their characteristics compared. 

The first-order probability densities are mutually the same for a stationary random 
process, hence we may write 

f ( X P  t l )  = f d x )  (3.179) 

Thus, the calculation of the first-order density of a random process is transformed 
to the calculation of the density of the random variable X, the realizations of which 
are given by the values of the realizations of the random process in any fixed time. 
The mean value m , ( X )  of the random variable X is, therefore, the mean value 
m , [ X ( t ) ]  of the random process X(t ) .  

3.1.12 Correlation (autocorrelation) functions of random processes 

Figure 3.19 shows two random processes X , ( t )  and X&) which can have the same 
mean value and variance, and yet differ essentially: in Fig. 3.19a the value of each 
realization in the process X , ( t )  is decreasing, while in Fig. 3.19b the realizations show 

2 
L 

Fig. 3.19 Inner structure ofseveral realizations 
of a random process b 0 1, z 

f -f _I 

0 4 
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considerable pulsations. This difference is described by the correlation function which 
is another characteristic of a random process, expressing its inner structure, i.e., the 
correlation dependence between the values of the process in various moments of 
time. For a pair with a time lag the value of the correlation function is equal to the 
coefficient of correlation of the corresponding random variables. 

According to equation (3.177), the correlation function R(t , ,  t 2 )  is given by the 
mean value of the product [X(t,) - X(t2)], hence 

R(t , ,  t 2 )  = m,[X(t,) X(t,)] (equation 3.177’) 

Sometimes it is useful to express the deviations of the random process from the 

X(t )  = x(t) - a(t) (3.180) 

mean u(t). Such a random process is called centred and is given by 

Its correlation function is 

R(tl, t 2 )  = m,[~(t,)X(t2)1 = m,{[x(t,) - 4 1 ) l  [X( t2 )  - 4 l l l  (3.181) 

and is sometimes called the correlation function of the pulsations of a random 
process. 

Between the correlation function of a random process [equation (3.17811 and the 
correlation function of the centred process [equation (3.181)] is the relation 

R(t1, t z )  = R(t1, 4 - 4 1 )  4 2 )  (3.182) 

Dividing k(tl, t 2 )  by the product of the standard deviations o[X(t,)] o[X( t , ) ]  
of the corresponding random variables X(t,) and X(t2), we obtain the standardized 
correlation function of the random process 

(3.183) 

It follows from equation (3.183) that the standardized correlation function is equal to 
the coefficient of correlation of the random variables X(t,) and X(t2). Thus for the 
normalized correlation function it holds that 

Irl 5 1 (3.184) 

If the random process is stationary, the respective correlation functions of the 
process and the centred process depend on the difference z = t ,  - t,, only, hence 

R(t, ,  t2 )  = R(z) and k(t,, t2)  = k(z) (3.185) 

The relationship between them is 

k(t)  = R(t )  - a2 (3.186) 
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The standardized correlation function of a stationary random process is 

R(t )  - uz - A(t) 
r(z) = -- 

4 4 
For example of correlation function see Fig. 3.20. 

(3.187) 

- b w L l;; O’ $ 2 : ~ l : ~ ~ p  

+ + 
0 1  2 0 7  2 0 1 2 3 4  0 1  - 

t 
--r -Y -Y -Y 

Fig. 3.20 Examples of random-process correlation functions 
(a) absolutely random process (“white noise”); (b)  exponential correlation function; (c) power 

correlation function; (d )  correlation function in the form of a damped harmonic motion 

The correlation function in Fig. 3.20a may be described by the relation 

1 for T = 0 

‘0 for t + o 
/ 

47) = (3.188) 

i.e., the values X ( t )  are uncorrelated for any two moments in time. Such processes 
are called absolutely random (white noise) and differ from each other only by either 
mean values and distribution functions. In spite of not being really possible in 
hydrology, they are used when the problem of storage reservoirs is solved with the 
aid of general statistical characteristics. 

The correlation function in Fig. 3.20b may be expressed by the exponential function 

r ( t )  = e-‘(’) (a > 0) (3.189) 

The curve rapidly tends to zero. The constant tl determines the rate of disappearance 
of the correlation. 

The correlation function in Fig. 3.20~ is given by the power function 

r ( t )  = r( 1)’ (3.190) 

This curve also decreases rapidly; e.g., with 41) = 0.3 it holds that 43) = 0.027 

The power correlation function is typical for the simple Markov process which is 

where r(1) = r(z)l= 

for t = 3. 

used to design the storage reservoir volume. 
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The correlation function in Fig. 3.2Od may be expressed as the damped harmonic 

r ( T )  = e-a(r) cos PT (3.19 1) 

For small z the curve decreases, as in Fig. 3.20b, c; then it turns to negative values, 
and oscillates around zero, the amplitudes becoming smaller and smaller. It was 
proved that the empirical correlation functions of rivers in Czechoslovakia are of 
a harmonic nature; therefore they may be better approximated by the function 
(3.191), in spite of not exhibiting any perpetual damping. The possibility of negative 
correlation of more distant quantities substantially influences the reservoir volume 
under higher values of the coefficient of safe yield. 

Figure 3.21 shows three empirical correlation functions of a 30-year sample 
moving-average series (Votruba-Nachkel, 197 1): 

(a) that of annual relative Wolfs numbers, 
(b) annual precipitations, 
(c) average annual flows. 

motion 

-m+ 

Fig. 3.21 Empirical correlation function of 
(a)  average annual relative Wolfs numbers (1831-1894); (b) annual total of precipitations 

in Prague-Klementinum (1851-1914); (c) average annual flows of the river Berounka at Ktivoklat 
(191 1-1960) 



155 

The correlation function of the average annual relative Wolfs numbers (Fig. 3.21a) 
has a very regular harmonic behaviour with the values of the positive maxima being 
mutually similar. The 1 1-year period of solar activity is very significant. 

The correlation function of precipitations (Fig. 3.21b) is also periodic, although 
not as regular as in Fig. 3.21a. The negative maxima are even higher than the positive 
ones. 

The course of the correlation function of the annual flows (Fig. 3.21~) is similar 
to that in Fig. 3.21b which proves the similar behaviour of the long-time fluctuation 
of precipitation totals and runoffs. 

Calculation of sample correlat ion function 

In the case of an ergodic random sequence, two approaches may be applied 
(Fig. 3.22). 

Fig. 3.22 Diagram of calculations of the correlation function of an ergodic random sequence 
(u) for every 7 the same number of sample value pairs; (b)  for every r the complete sample range 

(a) From all the n values of the observation series a shorter sequence containing 
m members is taken and correlated to the sequence shifted by 1,2,. .., 7 (Fig. 3.22a). 
Hence, according to equation (3.8), it follows that 

(3.192) 

where xi are the sample values from x1 to x,,, 
are the sample values from x1 + r  to x,,,+*, 
is the time parameter of the correlation function (time lag), 
varying from T = 0 to T , , , ~ ~  = n - tn (the complete range T ( 0 , ~ ~ ~ ~ )  
need not be exhausted), 

X i + r  

t 
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Xi, (Xi+J 
~ ~ , ( c r ~ + ~ )  

is the sample mean of the values xi, (xi+,), 
is sample standard deviation of the values xi, (xi+,). 

The advantage of this calculation method consists in assigning the same weight 

All the empirical correlation functions in Fig. 3.21 were calculated in this way. 
(b) The complete range of the observation series (Fig. 3.22b) is used to calculate 

the correlation function r(z) for every T = 0,1,2, .. . . Using the same notation as 
above we can write 

to all the r( l), r(2), . . ., r(z). 

n - r  

C (xi - 'i)(Xi+r - ' i+J 
i =  1 

r(T) = 
biui+r(n - T - 1) 

(3.193) 

The number of correlated pairs is greater than in case (a), but with a growing T 
it decreases to (n - 2 )  pairs at the end. For a growing T, the reliability of the calculation 
of r ( ~ )  is, therefore, reduced. 

For method (a) the confidence limits are (according to R. L. Anderson): 

- 1  t,Jm - 2 
m - 1  rr, = (3.194) 

where t, is a standardized random variable quantile corresponding to the signifi- 
cance level (1 - a). 

For the usual significance levels of 95% and 99%, the quantile values are t,,95 = 
= 1.645 and t,,99 = 2.326, respectively. 

For the method (b) the confidence limits are 

- 1  t , J m  - z - 2 
m - 2 - 1  = (3.195) 

where t, is the same as in equation (3.194). 

3.1.13 Spectral densities of random processes 

The spectral density S(W), being the Fourier transformation of the correlation 
function, is a very important characteristic used to investigate the periodicity proper- 
ties of a random process. In the case of a centred random process 

S,(O) = - A(T) cos WT dT (3.196) 
Tc s," 

where o is the circular frequency 
2n 
T 

o=- 

providing the period is denoted by T (e.g., number of years). 

(3.197) 
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According to N. Wiener and A. J. Chinchin the correlation function of a stationary 
random process may be expressed by means of the spectral density as follows 

(3.198) 

Hence, with the aid of equations (3.197) and (3.198), it is possible to transform S(w) 
into r(~),  and vice-versa. If the complex representation 

eior + - ior  

2 
coswz = (3.199) 

is used, we can derive (substituting S,(w) = 2S:(w) and integrating from - 00 to 00) 

the expressions 
I r m  

W 

(3.200) 

(3.201) 

The spectral densities Sx(w) and S,*(o) differ mutually by the scale and the range 

Similarly to equation (3.200), we may write for a non-stationary random process 
of frequency o (only non-negative w for S,(w)). 

(3.202) 

With hydrological series mostly stationary spectral densities have been investigated. 
Here, because of short observation series the spectral density is calculated on the 
basis of a single realization. 

Nachazel and Patera (1975) investigated the correlation functions and spectral densities of 17 river 
points, 13 in the catchment of the river Labe, 4 in the catchment of the rivers Morava and the Danube. 
They used the approximation expression of A. S. Monin 

(3.203) 

where T 
m 
r ( ~ )  is the value of the correlation function according to equation (3.193) where the values x, are 

Figure 3.23 shows the correlation function m (Fig. 3.23a) calculated by method (b) (see Section 3.1.12), 
and the spectral density (Fig. 3.23b) of the flow series of the river Berounka at Kfivoklat (191 1-1960). The 
course of the correlation function differs slightly from that in Fig. 3 .21~ which was calculated by means 
of method (a) in Section 3.1.12. The confidence limits corresponding to the levels of significance 95% and 
99%, respectively, are the dashed lines. The curve of the spectral density assumes two strict maxima for 
T = 3 and 6 years, respectively, and another maximum for T = 13 years. The river Vltava at Kam);k and 
the river Sazava at Pofiti show a similar course in their series. 

is the length of the period in years, 
is the length of the interval of the correlation function argument T values, 

substituted by annual discharges Q,. 
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Reznikovski (1969) introduced analyses of 83 rivers in the U.S.S.R. In 25 of them periodic components 
appear, while for the others simple Markov chains without periodic components are better suited. 

i 1: 
a2 

-02 - 2- 04 
5 -  06 

99% 
95% 

30 

95% 
99% 

-.? , , 

Q5 
T 
Lo4 

Fig. 3.23 Correlation function ( u )  
and spectral density ( b )  of annual 
flows series of the river Berounka 

1; 
0 at Kiivoklat (191 1-1960) 

0 5 70 15 20 25 30 
- T  

The methods of filtration are supplementary in statistical analysis of hydrological 
series. Their essence consists in separating the random influences from the random 
sequence under investigation, e.g., the average annual flows; after filtration the 
properties (correlation, periodicity, etc.) briefly intervene and a more reliable basis 
for the mathematical model of the random sequence is obtained. 

An analysis of correlation functions and spectral densities of filtered series was performed by Nachlzel 
and Patera ( 1974) for annual flow series, precipitation series, temperatures, and relative Wolfs numbers. 

Thus, a filter used in the filtration methods transforms the given random process. 
This leads to another process with the desired probability properties. The theory 
of transformation of random processes was first elaborated in radio technology (see 
e.g., Levin, 1965, p. 252). 

The function of the filter is expressed by the transfer response function h(z). A linear 
system input random process (t) is transformed to another random process <,( t )  
which may be expressed by the convolution integral 

(3.204) 

In this way we generate continuous random processes which have not yet been 
used in hydrology and water management, rather they are approximated by discrete 
sequences. The advantage consists in the possibility of using digital instead of analogue 
computers. 
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3.2 MODELLING FLOW SERIES 

Models of hydrological series are supposed to give a better basis for solving 
problems in water management than observed series. The uncertainty contained 
in the observed series is replaced by a more complete description of the possible 
realization of the hydrological quantity (flow) sequence to be expected. Hence, 
moreover, a better expression for the exceedance probabilities of the quantity is 
obtained, especially in the neighbourhood of the extreme values. 

The modelled flow sequences serve mainly to solve the over-year control of a reser- 
voir discharge. For concrete hydrological problems, a 500-year long sequence is 
sufficient; for generalizing the results, at least a 1000-year long series is necessary. 
The modelled synthetic sequence must, as a rule, contain even more extreme values 
than the observed one. The statistical characteristics of a correct model, however, 
must agree with the characteristics of the original empirical series. Therefore, in 
this sense, we cannot expect the model to be more representative than the original 
series. On the contrary, we must check the fit by a test for any modelled random 
sequence. 

3.2.1 Modelling annual flow sequences 

The model of a series of independent average annual flows is the simplest. On the 
basis of the observed values, we can calculate the long-term average Q,, relative 
annual flows ki = Qr,i/Qo, the coeffcient of variation C,, and the coeffcient of skew- 
ness C,. The theoretical exceedance probabilities curve is constructed presuming 
a suitable probability distribution, e.g., Pearson type 111. Random numbers (Gaussian 
noise or Pearson type I11 noise) obtained from the tables (DupaE and Hajek, 1962; 
Reisenauer, 1970) are considered to be values of the exceedance probabilities p .  We 
deduct the corresponding values ki  from the probability curve, and the arbitrary 
long synthetic series which has arisen, is used to solve the problem. As the table of 
random numbers and the values of Q,, C, and C, are sufficient to construct the model, 
the method may be used even when we have no time series of observations. 

Modelling an annual discharge sequence with correlated values is more complicated. 
Svanidze (1961) presented two methods with correlation between values of any two 
neighbouring years, namely the method of continuous functions and the method 
of non-continuous firnetions (Votruba and BroH, 1966, pp. 141-143). 

Modelling any probability distribution with any correlation structure is simplified 
by dividing the calculation into two steps: in the first step we form a sequence with 
a given corrcLition structure, but normally distributed; in the second step the sequence 
is transformed into a sequence with a given distribution. The advantage consists 
in employing profound knowledge of the normal distribution and having many aids 
in its application. 
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Before proper modelling we must transform the original real series so that we 
obtain a normally distributed sequence. In the case of the log-normal distribution 
we choose, e.g., the transformation 

y = lg(x - x,,) [equation (3.6111 

y = h(x )  [equation (3.7011 

The transformation for the Pearson type I11 distribution (Beard, 1967) is known: 

or 

so that the variable y is normally distributed. 

= - [ (Tx 6 cs + 1J’3 - 13 + 5 
CS 6 

(3.205) 

The model of the series quantity y with normal distribution must be inversely 
transformed to the model of the quantity x (e.g., flows Q,) with a given probability 
distribution. 

The universal method of the linear regression model (Kos, 1969) has been used to 
model river flows, for which computer programs have been prepared. The method 
assumes that there is a linear relationship between the flow at time t and the flows 
in the preceding years (t - l), (t - 2), . . ., (t - k), given by the properties of the real 
series; the number of preceding years corresponds to the order of the Markov chain. 
The mathematical model is expressed by the basic formula called the linear regression 
stochastic model*): 

x, = b,x,- ,  + b 2 ~ f - 2  + ... + bfi,-k + e, 
k + l S t S T  

(3.206) 

where T is the number of terms of the real series, 
x,- I ,  ..., x,-k - average annual flows in years (t - I), ..., (t - k), 
b, , . . ., bk 
et - random deviation. 

- regression coefficients depending on the correlation function, 

The coefficients b,, . . ., bk are determined by the least squares method. They follow 
from the system of k linear equations obtained by zero value of the partial derivations 
of the sum Get with respect to individual values b,, . . ., b,. The equations are 

T T T T 

*) T h e  model is not connected with the previous transformation and the standardization of the random 
variable, but it is more easily investigated for a standardized and centred process. 
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Dividing the equations (3.207) by the term [ T  - (k + l)], we obtain 

ml(xi-,xr) = blml(xr-lxi-l)  + b2m1(Xi-1Xi-2) + . * *  + bkml(xf-lxr-k) 

(3.208) 

ml(xi-kxf) = blml(xr-kxt-l) + b2ml(xf-kXi-2) + * * .  + bkml(Xt-kXi-k) 

where ml(. ..) denotes, according to equation (3.177), the product general moment 
of the first order with the meaning of the random process correlation function. 

In the case of a normalized process (the variable z~),  the expressions ml( ...) mean 
the correlation coefficients of the correlation function (see Section 3.1.12). Thus 
equation (3.208) may be rewritten in the form 

r(1) = b, 1 + b2r(l) -f ... + bkr(k - 1) 

r(k) = b,r(k - 1)  + b,r(k - 2) + ... + b k .  1 
(3.209) 

where D is the determinant of the matrix containing thd correlation coefficients, 
Di is the determinant constructed by substituting the left-hand side vector 

The value of the random deviation e, in equation (3.206) is determined by its 
for the ith column of the matrix. 

relationship to the residual variation s2, from which it follows that 
n 

(3.210) 

and after reducing, with respect to the limited length of the series, we obtain 

(3.21 1) 

Hence 

el = Sd, (3.2 12) 

where d, is the standard normal random variable. 

Calculation 

1. We analyse the set of basic statistical characteristics of given real series of 
annual flows x, which, if necessary, we transform to a series y ,  with normal prob- 
ability distribution. 
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2. We calculate the arithmetical mean and the standard deviation of the trans- 
formed flows y,, and the series is standardized to the series z,. 

3. We choose the maximum length of the Markov chain M which will be considered 
further, and we calculate the auxiliary value pT = T - M - 1, where T is the number 
of years of observation. 

4. We calculate the coefficients of the correlation function for various time shifts 
up to the value M, according to the formula 

1 T  
r(i) = - z,z,-~ for i = 1,2, ..., M 

p 1 = M +  1 
(3.213) 

5. The system of linear equations (3.208) is solved with the aid of a known method 

6. We calculate the residual standard deviation according to eqn. (3.210), i.e. 
(e.g., by means of determinants), the coefficients bi being obtained. 

M 
s =  d l  - C b i r ( i )  

i =  1 
(3.2 1 4) 

7. The lengths of the Markov chain are chosen successively shorter by one; steps 

8. Random flows z, are modelled according to eqn. (3.206). 
9. In the case where the relation y = lg (x - x,) in the first (direct) transformation 

5-6 are repeated until the minimum of s is reached. 

is used, then the random flows z, obtained are inversely transformed to 

x, = exp [z,s,, + j ]  + x, (3.21 5) 

Reznikovski (1969) introduced a method of modelling, assuming either a simple 
or a high-order Markov chain, and a Pearson type I11 annual-flow probability 
distribution with C, = 2C,. 

3.2.2 Modelling monthly flow sequences 

In water management we must usually consider not only the long-term fluctuation, 
expressed by the sequence of average annual flows, but also the cyclic variability 
during a year. 

In such a case we may follow two ways: 
(a) the annual and the seasonal functions are treated separately; the annual 

functions on the basis of the sequence of average annual flows and the seasonal ones 
on the basis of the distribution of the flows in one year; 

(b) the complete function of a reservoir is solved directly, as a rule on the basis, 
of the average monthly flows. 

Method (b) is more advantageous and more exact from the methodological point 
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of view. Constructing the model of a sequence of average monthly flows is more 
complicated than that of the annual flows and two methods were developed 
- the method of the linear regression model, 
- the method of fragments. 

Method of linear regression models 

This method is similar to that in Section 3.2.1, but is more complicated, because 
it deals with statistical characteristics and correlations of individual calendar months 
and this has the following consequences: 

(a) The probability distribution of flows in particular months (i.e., all January 
flows, February, . . ., December) exhibits greater skewness than that of annual flows; 
therefore a transformation to the normal distribution is necessary, as a rule. 

(b) The cyclical nature of the flow fluctuations during any one year means the 
non-stationarity of the process; therefore the random variable must usually be 
standardized in order to obtain a model with a comparable distribution function. 

(c) Annual hydrographs are considered as various realizations of a random 
process and serve to calculate the statistical characteristics; the coefficients of cor- 
relation form the correlation matrix, the elements of which express the correlation 
between the flows in any two months. 

Similarly to equation (3.206), for modelling a synthetic monthly flow (with a trans- 
formed and standardized z )  in any month m, we can write 

zc ,m = b l . m z c , m - 1  + b 2 , m z c , m - 2  + ... + h , m Z c , m - k  + e m  

where m = 1,2, ..., 12 (the corresponding month), 
c = I , & .  .., ~ / 1 2  (number of cycles-years), 
T = total number of months, 
r, = the standard normal random deviation in month m. 

(3.2 1 6) 

Modelling according t o  equat ion (3.216) 

The first value, z,,,,, is calculated on the basis of the preceding (arbitrarily chosen) 
values zc ,m- i ,  whose number corresponds to the order of the Markov chain. 

The next value of the flow, z ~ , , , + ~ ,  in the following calendar month of the same 
year, is calculated from the value z C , , ,  and the (chosen) preceding values, but with 
the aid of the corresponding equation (3.216) for zC,,+ 1. Then the value zC,,+ gives 
the value z,,,+~, etc. 

For the regression model it is necessary to solve twelve equations of the type in 
eqn. (3.216). The modelling thus continues with step 12 (annual cycle). After cal- 
culating the twelve synthetic flows in the first year, we continue by calculating the 
flows z ~ , ~  in the second year, etc., thus obtaining a pseudo-chronological series of 
monthly values z,. 
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The coefiicients bi,m (i = 1,2, ..., k, m = 1,2, ..., 12) in every equation (3.216) are 
determined as in the model of the annual flows by means of the least squares method. 
From the sequence of real flows we obtain a system of k-linear equations for every 
month m: 

C  C  C  C 

~ z c , m - l z c , m  = b l , m  ~ c , m - l z c , m - l  + b 2 m ~ c , m - l z c ~ m - 2  + 
c = c  C C  C 

+ b k , m ~ c , m - l Z c , m - k  

(3.217) 
C C C C 

c c , m - k z c m  = '1.m >c,m-kzc.m-l + '2.m ~ c . 1 n - k ~ c . m - 2  + * * *  -t 'k.m >c.m-kzc,m-k 
C C C C  

where c = T/12, 

= entire ?+) + 2 (in years). 

After dividing each equation of the system [eqn. (3.217)] by the number of cor- 
related pairs reduced by one, i.e., by c - C, it follows that 

m l ( z m - l z m )  = bl,mml(zm- l'm-1) + b2,mml(zm- 1'911-2) + ' * *  + bk,mml(zm- lZm-k)  

(3.218) 

ml(zm-kzm) = bl.mml(Zm-kZm- 1) + b2,mml(zm-kzm-Z) + * * '  + bk,mml(zm-kZm-k) 

The expressions m, mean the elements of the correlation matrix which are cal- 
culated from the given real flow series. The unknown regression coefficients bi,, are 
determined by solving the system in eqn. (3.218). Thus, 

r(1,m)=bl,;1 + b 2 , , r ( 1 , m ) + . . . + b k , , r ( k -  1,m) 

r(k, m) = b,,,r(k - 1, m) + b2,,r(k - 2, m) + ... + bk,,, * 1 
(3.219) 

The meaning of the determinants D, and Di,,, (i = 1,2, ..., k )  is the same as in the 

The residual variance in every month m follows from the equation 
model of the annual flows; however, they depend on every particular month m. 

s i  = = m ~ ( ~ ; )  - bl ,mml(zmZm-l )  - bZ,mml(zmzm-2) - . * *  - bk,rnml(zmzm-k)  

(3.220) 
According to the limited length of the series, it holds that 

(3.221) 

The previously calculated values of coefficients bi,,, and m,(z,z,- i) may be used 
advantageously; thus only m(z i )  remains to be determined. 
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When testing for the proper length of the Markov chain, we follow the same ap- 
proach as in the case of the model of annual flows, i.e., the residual variance is de- 
termined in dependence on the length of the Markov chain until the minimum is 
reached. 

The particular steps in the calculation with the aid of a computer are analogous 
to those of the annual flow modelling, the only difference is that the appropriate 
procedures are repeated for every month. The last step of the calculation is again 
the inverse transformation of the artificial flows; if the log-normal distribution is 
used for the direct transformation, then for the inverse transformation it holds that 

(3.222) x c , m  = exp [zc.m%l + LI + x,,o 

Method of fragments 

The method of fragments (Svanidze, 1963) is based on double random sampling. 
With the aid of the method described above, the first random sampling of the average 
annual flows is performed (Fig. 3.24a). Then the second random sampling of fragments 

",/ 700 n 
600 

3cx) 
200 
100 
0 

Fig. 3.24 Modelling of monthly flow series by 
means of the fragment method 
(a) first random sample Qr.,; (b) second ran- 
dom sample (of fragments &)); (c) section of 
modelled series of average monthly flows 

follows, corresponding to the real relative flows Q/Qr,i = q = q(t) in individual years 
of observation; thus in every year it holds that 4 = 1 (Fig. 3.24b). The fragments are 
numbered and with the aid of the random-numbers table are assigned to the individual 
years of the synthetic series. The ordinates of the fragments are multiplied by the 
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corresponding Qr,i of the synthetic series and an arbitrarily long, pseudo-chrono- 
logical synthetic series with distribution of the flow within the years is obtained 
(Fig. 3.24~).  

Applying the method in this form, when no relation between Q, and the distribution 
of the flow within the year is supposed, may lead to unrealistic results*). By investi- 
gating relations between Q,  and variability of flow during a year, the unrealistic 
randomness may be excluded. The method might be improved by increasing the 
number of fragments to be comparable with the number of years of observation by 
means of modelling. Thereby, however, the method loses its main advantage, i.e., 
simplicity, whereby it does not need modern computers. Since the introduction 
of numerical computers, the method of fragments has lost its importance as compared 
with the method of the linear regression model. 

There is, however, one advantage: it maintains the correlations between the annual 
flows Q,, whereas with the regression method the correlations between monthly 
flows Q, are retained, but the correlations between values of Q, might not be. 

For a long-term annual cycle, the method of fragments should give more exact 
results, because of the importance of a proper correlation between Q,  values, whereas 
for a cycle of a few years, more exact results should be obtained from a series modelled 
by the regression method, because the correctness of the correlation between Q ,  
values is ensured. 

3.2.3 Modelling sequences of monthly flows in a system of stations 

Between the empirical flow series at points on a river a significant correlation 
often exists (Fig. 3.7, Table 3.7). The table shows that the coefftcient of correlation 
r = 0.69 is high, even between distant catchments (the Labe to Josefov and the 
Vltava to Kamik). In two cases the coefficient is as high as, r = 0.94. 

If reservoirs work in a system, their collective efficiency is generally higher than 
the total of their isolated effects. The rate of the increased effect of the system, as 
compared with the isolated effects of individual reservoirs in the system, depends 
on the synchronization of their hydrological regimes and their relative volume. 
The more asynchronous the regimes, the higher the effect of the system. 

If flow series of a system of river profiles are modelled, a double correlation re- 
lationship has to be considered: 
- correlation (auto-correlation) within each series, 
- cross-correlation between synchronized flows of various stations of the system. 

*) If from the 30-year series from 1931 to 1960 for the river Berounka at Kfivoklat a fragment from 1954 is 
assigned to the highest-flow year, 1941, then in July we obtain an average flow equal to 2.5 times the 
greatest observed monthly maximum and greater than the maximum peak flow of a two-year flood. On 
the contrary by assigning a fragment of 1947 to the year 1934, the minimum monthly mean value is smaller 
by one third than the minimum daily flow of the whole thirty years (Votruba and Brora, 1966, p. 145). 
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Table 3.7 Correlation between the annual flows of some gauging stations in Bohemia (19261946) 

Stream 
gauging site 

Catchment area Correlation coefficient r 

the Labe-Josefov 1840.2 - 0.92 0.69 0.71 0.71 0.75 0.79 

the Labpardubice 5 987.3 - - 0.76 0.78 0.79 0.80 0.86 
- 0.89 0.94 0.85 0.92 

the Berounka-Beroun 8 287.9 - 0.93 0.89 0.92 

- 0.87 0.94 the Vltava-Modfany 26 706.1 

the Ohfe-Louny 4981.4 - 0.89 
the Labe-MElnik 41 798.3 - 

- the Vltava-Kam);k 12 213.0 

- 

Two basic methods are developed for modelling flow series of a system of stations: 
- method of central and satellite stations, 
- method of orthogonal transformation. 

(a) Method of central  and  satell i te s ta t ions 

By this method we model first the flows in the central station (e.g., by means of the 
method of the linear regression stochastic model according to Sections 3.2.1 or 
3.2.2) and then the temporally corresponding (coinciding) flows in the other satellite 
stations, according to the linear regression : 

(3.223) 

where yi,j,k is the flow with the ordinal number i in monthj, in station k, 
L j , k  - average monthly flow in month j, in station k, 
bj,k - regression coefficient in monthj for the relationship between the flows 

x i , j  - flow of the central station, with the ordinal number i, in month j, 
x j  - average monthly flow from the central station in monthj, 
ui - standardized random variable, 

of the central station and of the satellite stations, 

- 
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sj,k - standard deviation of flows in month j ,  in station k, 
- coefficient of correlation between flows in the central and the satellite 

For any pair of the central and satellite stations we prepare twelve equations of 
type (3.223) and (3.224) and the calculation is carried out for the individual calendar 
months. 

The method is suitable mainly for relatively synchronic regimes; otherwise the 
auto-correlation of the series of the satellite stations may be considerably disrupted. 
In the case of a looser bond between the two stations, equation (3.223) can contain 
not only the contemporary flows in the central station xi ,  but also the preceding flows 
xj- ,, and also, if need be, the other flows yj- in the satellite station. 

station k, in month j .  

(b) Method of or thogonal  t ransformation 

This method is more general and its principle consists in the transformation of 
the linearly dependent flows in any calendar month at various stations into in- 
dependent (orthogonal) flows. The given real flows xi,j,k in the same month j ,  but at 
various stations k, form correlated random vectors which are transformed to in- 
dependent vectors. 

First the real flow sequence in one calendar month and at all stations is transformed 
to a normally distributed sequence which, moreover, is standardized. Then the 
orthogonal transformation is performed, and a random series at hypothetical stations 
is modelled. By the inverse transformation we obtain the correlated random sequences 
in the real stations and by another inverse transformation we finally obtain the 
desired synthetic sequences with a given mean value and standard deviation. 

In the case of a large system of stations (reservoirs), we may be limited by the 
computer capacity. Then we cannot model the whole system at once, but parts 
(sub-systems) with closer connections have to be modelled separately. Hence, the 
same problem arises as with the independent modelling of isolated series: the possi- 
bility of deranging the real correlations between the individual sub-systems. The 
most important things are to analyse the problem, to prepare a program for the 
computer, and finally to interpret the results properly. 

3.3 INFLOW TO A RESERVOIR 

In designing a reservoir, it is absolutely imperative to know the law of inflow. 

- natural, influenced by man, or completely controlled by human intervention, 
- deterministic or stochastic, 
- constant or variable. 

Inflow can be 
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The characteristics of inflow to a reservoir depend on its function (flood control 
or direct supply) and on the duration of the control cycle (Table 3.8). For short-term 
control, a deterministic inflow can be considered; for over-year control, a stochastic 
one in necessary. 

Table 3.8 Inflow to a reservoir and withdrawal with various release control cycles 

Control cycle daily weekly annual over-year 

Inflow deterministic deterministic deterministic or 
stochastic stochastic 

steady or variable steady as a rule variable variable 

frequently natural or natural or natural or 
controlled by man controlled changed changed 

Withdrawal and deterministic or deterministic or stochastic stochastic 
controlled release stochastic stochastic 

variable or steady variable as a rule variable variable 

controlled controlled controlled controlled 

A constant inflow to a reservoir is introduced only for short-term release control 
by distribution reservoirs. 

Controlled inflow to a reservoir is frequently introduced for short-term discharge 
control (pumping of water to a water tank, to the reservoir of pumped storage hydro- 
power plants, etc.). Lateral reservoirs have a more or less controlled inflow as the 
water is brought from the main stream, or generally speaking, reservoirs that receive 
their water from other catchments. 

The flood inflow to a reservoir must also be taken into consideration in the de- 
termination of its flood-control effect. This i d o w  is short, but very variable. To solve 
the problem, the real pattern of a flood wave is sometimes used. However, more 
frequently, models of floods are constructed with various probabilities of occurrence, 
both as to their maximum peak discharge and to the form this takes, and thus the 
flood volume. This is usually a natural or influenced inflow, and is included in the 
design as deterministic, with a certain probability of being exceeded. 

For the inflow to a reservoir it is not sufficient to consider the statistical data of 
the past and the present states, but also a forecast of the development of inflow in 
the future has to be elaborated with regard to the long physical life span of a reservoir 
and of the more progressive facilities that control the inflow. 

More and more frequently, water for reservoirs will be diverted from one catchment 
area to another. Economic analysis optimizes the size of the transported flow and 
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determines the dimensions and costs of the conduits. For preliminary calculations 
it is possible to determine the amount of water diverted with a certain chosen re- 
liability; this can be done either numerically or graphically by a summation curve, 
which is especially suited for an analysis of alternative conduit capacities. The 
diagram in Fig. 3.25 illustrates that 
- with a minimum maintained discharge in the river Qmin = 0.25Qr, the amount of 

water diverted in one year decreases by 25% of the annual discharge W,, 
- if the sum of the conduit capacity and the maintained minimum flow Q,,,,, + 

+ Qmin = l.SQ,, the amount of water diverted per year decreases by the excess 
discharge q, which is 18% W,, 
- if the conduit is Q,,,,, = 1.25Q,, the annual diversion has the value of Wdiy = 

= 0.57 W, of the design year, 
- the total water diversion Wdiv is decreased to a greater extent by maintaining 

a minimum flow in the stream than by a small capacity of the conduit, as peak flows 
last only a short time so that the volume of the excess discharge W', is relatively small. 

Fig. 3.25 Analysis of water diversion by means of the summation curve 
(u) time curve (hydrograph) and exceedance curve of discharges in the river from where the water 

is diverted; (b) summation curve corresponding to curves (a) 

When diverting water directly from a river (without storage) it is usually not suf- 
ficient to work with monthly or ten-day discharges, but the continuous curve of 
discharges or at least the average daily discharges have to be considered. The cal- 
culations could be incorrect if the average discharges within the month are used. 
This error need not be significant if the conduit has a large capacity and if the flood 
peaks exceeding this capacity are only very short. 

It is more difficult to construct a chronological or pseudo-chronological series 
for the balance solution of a reservoir, if we do not want to limit ourselves to a direct 
solution on the basis of observed series. Essentially there are two such cases: 
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- the natural inflow to a reservoir is negligibly small (as for a lateral reservoir) 

- the design has to consider the natural inflow together with the diverted water. 
For the over-year reservoir, a long series of discharges in the river site from where 

the water is withdrawn and diverted to the reservoir will have to be modelled. Let 
us presume that mean daily discharges will be considered. No reliable method 
for direct modelling of the chronology of mean daily discharges with the help of 
a linear regression model has yet been elaborated. These are actually not natural 
daily discharges, but discharges from which the maintained minimum discharge 

so that the inflow is only the diverted water, 

Qmi" I I I I I I 
XI xu I 11 Ill 

-t 
Fig. 3.26 Reservoir with water diversion 

(u) layout; (h)  adjustment of hydrological input data at site I ;  (c) construction of inflow to reservoir 

(QII + QCJ 
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and the excess discharge, exceeding the conduit capacity, will have to be deducted. 
Naturally, such a reduced discharge will have different characteristics from a natural 
discharge. 

For the fragment method, the method explained in Section 3.2.2 is applied. Only 
the pattern of the fragments would change : instead of monthly (or ten-day) discharges, 
the fragments consist of daily discharges. 

A model of the inflow to a reservoir, i.e., a series reduced by the minimum main- 
tained and excess discharges, can be constructed as follows (Fig. 3.26), e.g. : 

1. observed series of mean daily discharges Q, in the withdrawal profile I are 
reduced by the minimum maintained discharge Qmin and the excess discharge Qi 
(Fig. 3.26b), whereby a series of daily discharges through the conduit Q,,, is obtained; 

2. the synchronous daily discharges in profile I1 and the reduced discharges through 
the conduit Q,,, are added; from these the series of the mean monthly discharges 
to a reservoir (Q,, + Q,,,) are calculated; this is the input set for the modelling of the 
series; 

3. from this initial series (Q,, + Q,,,), e.g., a linear regression model of a series 
of any length of average monthly flows to a reservoir is modelled; 

4. the modelled series serves as a basis for the design. 
It is also possible to model the series of the mean monthly discharges in profiles I 

and I1 separately, bearing in mind the correlation relationship between the two 
profiles according to Section 3.2.3; but as the series in profile I was deformed by the 
reduction, it does not seem that this more complicated method can have more 
reliable and accurate results. 

If the discharge Q,, is negligible, modelling is limited to the model of the reduced 
series Q,,, using the above method, but substituting Q,, = 0. 


