# APPENDIX C 1. DESIGN OF A STRIPPING COLUMN 

## Problem Formulation

A stripping column for a $90 \%$ removal of ammonia from waste water must be designed. The maximum flow of water is $10 \mathrm{~m}^{3} / \mathrm{h}$. The ammonium concentration is $80 \mathrm{mg} / \mathrm{I}$. The temperature is $18^{\circ} \mathrm{C}$.

## Solution

Equation (7.39) is used to find the diameter of the tower. Iw should be 0.08 or above, but for stripping column it is very difficult to obtain such a high Iw value and therefore it will be attempted to select $\mathrm{lw}=0.04$. It implies that a cross sectional area of $4 \mathrm{~m}^{2}$ should be used according to equation (7.39), giving $L=2500 \mathrm{~kg} / \mathrm{h} / \mathrm{m}^{2}$, provided that a is about $60 \mathrm{1/} / \mathrm{m}$. It is the case for 4 inch raschig rings (see Table 7.4), which are chosen. The minimum ratio air to water is about 3000 , which is selected. It will correspond to $30000 \mathrm{~m}^{3} / \mathrm{h}$ air or $36000 \mathrm{~kg} / \mathrm{h}$. It gives a flow rate 9 $000 \mathrm{~kg} / \mathrm{h} / \mathrm{m}^{2}$ or $7500 \mathrm{~m} / \mathrm{h}$, corresponding to about $2 \mathrm{~m} / \mathrm{s}$, which is fully acceptable see Table 7.4.

The flooding point is found from equation (7.40), using Figure 7.14. $Q$ is found to be:
$Q=(2500 / 9000)^{*} \sqrt{ } 0.0012=0.01$
which will give a $Z$ value of about 5 . As $\mu \mathrm{L}$ is $0,001 \mathrm{~kg} / \mathrm{m}^{*} \mathrm{~s}$ and $\mathrm{dh}^{3 / 2}$ is 0,01 (see Table 7.4), iw is therefore 0.05 or slightly more than found above. which is acceptable.

HtG is found from equation (7.38), as the constants are found in Table 7.3:

NB rigtigt symbol $? \mathrm{?a}=1.8$
$B=0.4$
$y=0.4$
Sc for air at $15^{0} \mathrm{C}$ can be found from the the viscosity of air ( $0.0648 \mathrm{~kg} / \mathrm{m} * \mathrm{~h}$ ), the diffusion coefficient ( $0.0392 \mathrm{~m}^{2} / \mathrm{h}$ ) and the specific gravity ( $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ ) to be 1.37. HtG is now found from equation (7.38):
$H t G=2^{*}(9000 / 2500)^{0.4} \sqrt{ } 1.37=3.9 \mathrm{~m}$.
$R$ is found from equation (7.42).
$R=H * 3000 / 1244$

Henry's constant $i$ found from (7.11) to be 0.69 bar. Therefore $R=1.66$, which by use of Fig. 7.16 is translated to 3 transfer units, as the fraction 0.9 is removed.

The height of the tower is calculated to be $3.9^{*} 3=11.7 \mathrm{~m}$.

