APPENDIX C3. DESIGN OF A REVERSE OSMOSIS UNIT

Problem Formulation

It is desired to produce $1000 \mathrm{~m} / 24 \mathrm{~h}$ of potable water ($500 \mathrm{mg} / \mathrm{dissolved}$ salts) from water containing $3000 \mathrm{mg} /$ of dissolved salts, mainly ammonium salts. Design a reverse osmosis unit for this job. A membrane is available that has shown ammonium chloride rejection of 0.95 at 45 atm . pressure. The permeability is 2.5 * $10-5 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{sec} / \mathrm{atm}$.

Solution

$$
\pi=\frac{2 * 3000}{58.5 * 10^{3}} 0.082 * 298=2.5 \mathrm{~atm}
$$

$\varphi \approx 1$

To be conservative we use: $\quad R^{\prime}=\frac{Q_{p}}{Q_{f}}=0.9$
Therefore the osmotic pressure of the concentrate is approximately 10π feed or 25 atm.

$$
\begin{aligned}
& Q_{p}=1000 \mathrm{~m}^{3} / 24 \mathrm{~h} \\
& Q_{i}=1110 \mathrm{~m}^{3} / 24 \mathrm{~h} \\
& Q_{r}=111 \mathrm{~m}^{3} / 24 \mathrm{~h} \\
& C_{p}=\frac{2 C_{i f}}{2-R^{\prime}}(1-\text { Rav })-\frac{2 * 3000}{2-0.9}(1-0.95)=272 \mathrm{mgn}
\end{aligned}
$$

$$
\begin{aligned}
& C_{i}=\frac{Q_{r}^{*} C_{p}-Q_{p} * C_{p}}{Q_{r}}=\frac{1110 * 3000-1000 * 272}{111}=27577 \mathrm{mg} / 1 \\
& C_{i a}=\frac{Q_{r} * Q_{i}+Q_{i} * C_{p}}{Q_{r}+Q_{i}}=\frac{111 * 27577+1110 * 3000}{1222}=5232 \mathrm{mg} / \mathrm{l}
\end{aligned}
$$

$$
C p=C a(1-R a v)=5232(1-0.95)=262 \mathrm{mg} / 1
$$

$$
F=2.5^{*} 10^{-5}(45-2.5)=1.06^{*} 10^{-3} \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{sec}
$$

$$
A=\frac{Q_{p}}{F}=\frac{1000}{1.06^{*} 10^{-3} * 10^{-6} * 10^{4} * 3600 * 24}=1092 \mathrm{~m}^{2}
$$

It is suggested that 1400 mz be used to allow for compaction and fouling of membranes.

