For Environmental Seminar in EiMAS

Introduction of air pollution control

March 10, 2011

Japan Environmental Management Association for Industry (JEMAI)

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants
- 4. Emission coefficient of SOx and its removal
- 5. Emission coefficient of Nox and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Hazardous gas treatment
- 8. Absorption methods
- 9. Adsorption methods

Life cycle of air pollutants

Down wash of smoke behind stuck and building

Theory of air mass movement

Air mass moves adiabatic up/down.
→up: adiabatic expansion→temp. down
→down: adiabatic compression→temp. up

$$\frac{dT}{dz} = -\gamma_d$$

Dry adiabatic rate $\gamma_{\rm d}$: 0.98°C/100m

(constant in lower atmosphere)

 $\gamma > \gamma d$ (γ : actual atmospheric temp. inclination) Temp. of air mass upped becomes higher than ambient air and accelerates its speed. \rightarrow unstable by heat

γ<γd

Temp. of air mass upped becomes lower than ambient air and restrains its speed.

 \rightarrow stable by heat

 $\mathbf{\gamma} = \mathbf{\gamma} \mathbf{d} \rightarrow \text{neutral by heat}$ (adiabatic distribution)

Typical types of smoke plumes and their corresponding temperature profiles

Loop shape: All layer is unstable.

Smoke moves widely up and down. High conc. of smoke appears momentary near emission point. Fine daytime

Conic shape: All layer is neutral or week stable

Smoke diffuses same speed vertically and horizontally. Maximum conc. point appears farther than loop shape.

Fan shape: All layer is strong stable (reverse temp.)

Smoke can not move vertically. Smoke only diffuses horizontally like a fan. Fine nighttime and morning.

Roof shape: Lower layer is stable and upper is unstable

Inclination of temp. changes in reverse. Smoke diffuses upper side of reverse layer. One reason of Smog.

Smoke shape: Lower layer is stable and upper is unstable

Because lower layer is unstable, smoke circulate only in a lower layer. (Fumigation)

Cause of formation and characteristics of surface inversion layer

Name	Cause and characteristics
Geographical inversion of temperature	When air current moves over mountains, because of foehn phenomenon warm air stands over cold air. Basin and/or valley.
Front inversion of temperature.	Because of moving of front cold air exists under warm air. Air pollution becomes serious in case of a stationary front.
Subsidence inversion of temperature	In region of anticyclone, air subsidence causes temp. rise and deep inversion layer is formed during day and night. Photochemical smog appears.
Radiation inversion of temperature	On calm clear night, ground surface is cooled by radiation loss and then strong inversion layer is formed. Smoke from surface is trapped in this layer.
Advection inverse of temperature	This inversion is formed when warm air flows over cold surface. Fog is frequently associated with this type of inversion.

Internal boundary layer formed over land near the sea shore and smoke plume diffusing in the layer

Past Air Pollution in Japan (Smog : Primary particle)

2001年(川崎市港湾局提供)

1966

2001

Air Pollution Caused by VOC (Fume : Secondary Particle)

September 3, 2003

September 4, 2003

Reaction of VOC in the Atmosphere

Frequency of appearance of various smoke specks on leaves according to the kind of gas pollutant

	Smoke specks on the leaf periphery and apex.	Inter-vein smoke specks	Point like speck on the whole leaf	Point like specks on the leaf periphery and the apex.	Etiolation on the whole leaf	Etiolation on the leaf apex and at the periphery
			Several se	00000000000000000000000000000000000000		
SO ₂	?	-##-	+	?	++	+
H ₂ SO ₄ mist	+	+	++	+	+	?
Cl ₂	#	++	+	++	+	++
HCl	++			++-		+
HF		?	?	?	+	++-
O 3		++	-##-	+	++	?
PAN		++				
NO2	+	#	. ++ .			

(Note) Damage frequency : # Very frequently ++ Frequently

+ Occasional

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants
- 4. Emission coefficient of SOx and its removal
- 5. Emission coefficient of Nox and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Hazardous gas treatment
- 8. Absorption methods
- 9. Adsorption methods

Environmental Aspects caused by Production Activities

Examples

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants
- 4. Emission coefficient of SOx and its removal
- 5. Emission coefficient of Nox and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Hazardous gas treatment
- 8. Absorption methods
- 9. Adsorption methods

Characteristics of fuels

Factors	Sulfur content (%)	Specific gravity kg/m ³	Calorific power kcal/l	Exhaust gas Nm ³ /l
A heavy oil	0.69	0.84	9390	11.4
B heavy oil	1.82	0.91	9540	12.1
C heavy oil	1.91	0.93	9690	12.2
Light oil	0.40	0.83	9130	11.5
Kerosene	0.004	0.79	8690	10.9
LNG*	0.001	0.71	10498	16.2
Coal**	0.817	1.53	6149	9.1
Firewood**	0.092	0.80	3832	11.4

* /Nm³

(JEA⁽²⁾, MITI⁽³⁾)

** /kg

Examples of Facilities accompanying Fume, Smoke and Dust Emission

Facility	Kinds of emission
Boiler	Cinders, fly ash, fume and smoke
Cement kiln	Clinker dust, dust
Ore calcinating furnace	Metal oxides, fly ash, mineral powder, fume, dust
Blast furnace	Mineral powder, coke powder, slag dust, dust
Ferroalloy furnace	SiO2 dust, dust
Steel manufacturing open-hearth furnace	Ferrous oxide, dust
Ceramic furnace	Fly ash, dust
Steel converter	Dust
Cement kiln	Dust
Cupola	Dust
Coke oven	Powder, dust
Metal silicon furnace	SiO ₂ dust
Carbon black furnace	Dust
Wastes incinerators	Dust, fly ash
Coal carbonization furnace	Tar mist
Sulfuric acid plant	Sulfuric acid mist
Zinc plating	Zinc oxide, ammonium fume
Mineral pulverization, screening, powder disposal transportation equipment	Dust, powder dust
Street paving material disposal furnace	Dust, SiO2 dust, tar mist

Major Artificial Sources of Pollutants

Substance	Emission source facilities, etc.
SOx	Various types of boilers, chemical plants, diesel cars, vessels, coal heating, etc.
NOx	Various types of combustion facilities, chemical plants, furnaces, automobiles, vessels, aircrafts, home heating, etc.
Suspended particulate (SP) Total suspended particulate (TSP)	Various types of boilers, furnaces, various manufacturing devices accompanying dust generation, automobiles, vessels, aircrafts, civil engineering, stock yard of coal
Hydrocarbons (HC) VOC	Petrochemical plant, oil-storage tank, painting and coating, automobiles, vessels, aircrafts, etc.
HCl, Cl ₂	Garbage incinerators, HCl manufacturing
HF	Manufacturing facilities of aluminum, glass, phosphate fertilizer, phosphoric acid, fluoric resins, etc.
СО	Automobiles
Offensive odor	Live-stock rasing, food processing, paper and pulpmill, fertilizers, refuse disposal, leather manufacturing, chemical industry

Specific Substances and Related Industries (1/2)

Chemical formula	Related industries
HF	Fertilizer industry, ceramic industry, aluminum industry
H_2S	Petroleum refinery, gas industry, ammonia industry,
	pulp mill
SeO ₂	Metal refinery, chemical industry
HCl	Soda industry, plastic process
NO ₂	Nitric acid manufacture, various industries
-	accompanying combustion
SO ₂	Sulfuric acid production, industries using heavy oil as
	fuel, metal industry, pulp mill
Cl2	Soda industry, other chemical industries
SiF4, Si2F6	Fertilizer industry
COCl ₂	Dyeing industry, organic synthesis
CS ₂	Carbon disulfide manufacture, solvent, plant fumigation
HCN	Hydrocyanic acid manufacture, iron manufacture,
	gas industry, chemical industry, electroplating
NH3	Fertilizer, plating, organic, inorganic drugs, blue print
PCl ₃	Drug manufacture, phosphorus dichloride
PCls	Phosphorus trichloride, phosphorus oxide
P4	Phosphorus refinery, phosphorus compound manufacture
	Chemical formula HF H ₂ S SeO ₂ HCl NO ₂ SO ₂ Cl ₂ SiF ₄ Si ₂ F ₆ COCl ₂ CS ₂ HCN NH ₃ PCl ₃ PCl ₅ P4

Specific Substances and Related Industries (2/2)

Name of substance	Chemical formula	Related industries
Chlorosulfonic	HSO ₃ Cl	Drug manufacture, dyestuffs manufacture
acid		
Formaldehyde	HCHO	Formalin manufacture, leather, synthetic resin
Acrolein	CH2=CHCHO	Acrylic acid manufacture, synthetic resin, varnish manufacture
Hydrogen phosphide	PH ₃	Phosphoric acid manufacture, phosphoric acid fertilize r manufacture
Benzene	C6H6	Petroleum refinery, formalin manufacture, painting industry, organic solvent
Methanol	CH ₃ OH	Methanol manufacture, formalin manufacture, painting industry, resin industry
Nickel carbonyl	Ni(CO)4	Petrochemistry, nickel refinery
Sulfuric acid (contains SO ₃)	H2SO4	Sulfuric acid manufacture, fertilizer industry, inorganic chemistry
Bromine	Br ₂	Dyes, medicine, agricultural chemicals
Carbon monoxide	со	Gas industry, metal refinery, internal combustion
Phenol	C6H5OH	Tar industry, chemical drug, painting industry, resin industry
Pyridine	C5H5N	Pharmaceutical, chemical industry, etc.
Mercaptan	CmHnSH	Petroleum, petrochemistry, pharmaceutical, feed manufacture

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants

4. Emission coefficient of SOx and its removal

- 5. Emission coefficient of Nox and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Hazardous gas treatment
- 8. Absorption methods
- 9. Adsorption methods

Sulfur content in coal and SOx in combustion gas

Sulfur content in heavy oil and SOx in combustion gas

Oxygen and SO₃ in heavy oil combustion gas

Particulates and SO3 in combustion gas of heavy oil (S=2-3%)

Sulfur removal from fuels

(a) Vacuum gas oil (VGO) hydrodesulfurization (HDS) process

(b) Direct HDS process

Desulfurization Process

Sodium sulfite recovery process

 $Na_2SO_3 + SO_2 + H_2O = 2NaHSO_3$ $NaHSO_3 + NaOH = Na_2SO_3 + H_2O$ $Na_2SO_3 + 1/2O_2 = Na_2SO_4$ **Product**

Desulfurization Process

Flowsheet of lime/limestone-gypsum process (with prescrubber for high purity gypsum production)

 $CaO + SO_2 = CaSO_3$ $CaCO_3 + SO_2 = CaSO_3 + CO_2$ $CaSO_3 + 1/2O_2 + 2H_2O = CaSO_4 2H_2O$

30

Desulfurization Process

Ammonia scrubbing for ammonium sulfate production

Desulfurization Equipment

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants
- 4. Emission coefficient of SOx and its removal
- 5. Emission coefficient of NOx and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Hazardous gas treatment
- 8. Absorption methods
- 9. Adsorption methods

Emission coefficient of NOx from kinds of fuels

Town gas	0.5 - 1.6	kg/10 ³ m ³
LPG	1.3 - 2.0	kg/ton
Kerosene	1.3 - 2.0	kg/k <i>l</i>
Heavy oil	2.5 - 4.0	kg/kl

Emission coefficient of NOx from facilities

Unit: NO₂ converted kg/10⁸kcal

Fuel	C heavy oil	B heavy oil	A heavy oil	Kerosene	Light oil	LNG	Coal
Power generation boiler	58.29	57.89	32.21	26.71	13.91	23.31	75.43
Industrial boiler	40.96	41.72	23.21	19.25	10.02	16.38	53.01
Diesel power generation	752.9	711.1	398.9	318.2	410.2	-	-
Gas turbine	160.5	151.6	85.0	67.8	87.4	75.3	-
Gas generating furnace	50.32	47.53	26.66	21.26	27.41	23.61	64.33
Iron ore pellet incinerator	46.28	43.71	24.52	19.56	25.21	21.72	-
Coke oven	273.0	257.8	144.6	115.4	148.7	128.1	349.0
Air-heating stove for blast furnace	77.36	79.82	43.83	35.87	46.30	30.74	-
Petroleum heating furnace (iso)	42.86	44.22	24.28	19.87	25.65	17.14	-
Brick burning furnace (series)	213.5	201.7	113.1	90.24	116.3	100.2	273.0
Cement firing furnace (dry system)	119.6	112.9	63.35	50.53	65.15	56.11	-
Ceramics firing furnace (series)	95.12	89.84	50.39	40.20	51.82	44.63	121.6
Glass melting furnace (series)	256.5	242.3	135.9	108.4	139.8	120.4	327.9

(JEA⁽²⁾, MITI⁽³⁾)

SOx and NOx emission coefficient from cars

Kinds of cars*	SOx emission coefficient g/No. of car·km	NOx emission coefficient g/No. of car·km
Passenger car	0.032	1.255
Light passenger car	0.021	0.267
General truck	1.214	5.454
Small truck	0.042	2.427
Light truck	0.034	0.524
Bus	0.502	6.158

* Average of Japanese cars. (JEA⁽²⁾)

Engine load ratio by ship operating mode (JEA⁽²⁾) Unit: %

Engine	Diesel	Turbine
Full	85	100
Standby full	52	65
Half	10.6	20.5
Slow	5.3	15
Dead slow	3.6	13

Empirical formula of exhaust coefficient for ships (JEA⁽²⁾)

Diesel engine using heavy oil A

Quantity y	Power x	Formula
1 NOx (Nm ³ /h)	<i>x</i> (ps/h)	$y = 1835x^{1.125} \times 10^{-3}$
2 Fuel consumption (kg/h)	<i>x</i> (ps/h)	y = 0.15x + 25.24
3 Exhaust (Nm ³ /h)	<i>x</i> (ps/h)	$y = 5.05x + 490.96_{37}$

Emission amount of NOx from an airplane engine

Unit:Nm³/s

Airplane type Mode	DC-8	B-747	B-737	NAMC-YS-11
Idle	0.211	0.827	0.061 to 0.085	0.028 to 0.034
Approach	2.441	6.506	0.630 to 0.805	0.200 to 0.201
Climb	9.403	52.589	_	_
Take off	14.382	94.063	3.100 to 3.5	0.552

Note: The number in the table is amount from an engine, so that total amount of NOx from an airplane is obtained by multiplying numbers of engine.

Principles and methods of NOx reduction

	Gas $N = 0\%$	Oil N = 0.1 - 0.5%	Coal N = 1 - 3%
Without CM	200 - 300	300 - 500	500 - 1000
With CM	50 - 100	80 - 200	200 - 400

(CM: combustion modification)

The great majority of NOx comes from combustion of fossil fuels, and almost all of it is in the form of NO at the time of occurrence. Some part of NOx generated by combustion is called fuel NOx results from the reaction of nitrogen in the air at a high temperature, and is therefore called 39 thermal NOx.

Investment cost for combustion modification

Control technique	Cost (yen/Nm ³ /hr)
LNB + TSC + FGR	657
LNB + FGR	491
TSC + FGR	475
LNB + TSC	480
TSC	292
LNB	129
OSC	26
Mean	467

- * Including change of burner tip.
 - LNB : low NOx burner
 - TSC : two-stage combustion
 - FGR : flue gas recirculation
 - OSC : off-stoichiometric combustion

Cost performance of NOx control techniques applied to boilers

41

NOx reduction method

Removal of NOx

Basics of NOx reduction

- Change low N containing fuel (Heavy oil→ligh oil、LNG)
- Low O₂ combustion
- Low temperature combustion (→control ratio of air and fuel)
- to shorten combustion time at high temperature

Denitrization – Ammonia

catalytic denitrization method

- Temp. 300~400°C (decompose to $N_2\&H_2O$) 4NO + 4NH₃ + $O_2 \rightarrow 4N_2 + 6H_2O$ $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$
- Composition of catalyst : vanadium , Tungsten, Molybdenum oxide, Titanium oxide
- Shape of catalyst: sand, Honeycomb , plate
- Shape of catalyst : high effeciency, no byproduct, easy operation, no waste water

Relationship between ratio of air over fuel and conc. of NOx

<Theory of second step combustion>

•Ratio of air over fuel < 1 \rightarrow lack of O₂

- \rightarrow to reduce Nox generation
- Ratio of air over fuel > 1 → Supply of much excess of air → to reduce Nox generation

Examples of Self-Recycling Low NOx Burner

Denitrization of selective contacted reduction

Temperature: **300 °C** ~ **400 °C**

Catalyst : vanadium , Tungsten, Molybdenum oxide, Titanium oxide

Typical flow of Denitrization of waste gas from a boiler

Electric Precipitator

Typical structures of Denitrization Catalysts

Honey-comb Type Plate Type

. .

Denitrization Equipment

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants
- 4. Emission coefficient of SOx and its removal
- 5. Emission coefficient of NOx and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Hazardous gas treatment
- 8. Absorption methods
- 9. Adsorption methods

Electric field in an electrostatic precipitator (plate type)

Electrostatic Precipitator

Electrostatic Precipitator

51

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants
- 4. Emission coefficient of SOx and its removal
- 5. Emission coefficient of Nox and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Hazardous gas treatment
- 8. Absorption methods
- 9. Adsorption methods

Waste Gas Treatments

Waste Gas Recovery system from a Tank

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants
- 4. Emission coefficient of SOx and its removal
- 5. Emission coefficient of Nox and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Absorption methods
- 8. Adsorption methods

Treatment of Various Gases with Absorption Process

Treatment of Hydrogen Chloride

Hydrogen chloride (HCl) is a colorless, irritating gas, which fumes in moist air. It is readily soluble in water; the solution is highly acidic and strongly corrosive to metals. Water scrubbing is most extensively used to remove hydrogen chloride, but an alkaline solution is also employed as the absorbent to enhance absorption efficiency.

Process		Outline		
Absorption	Water scrubbing	Because of the high solubility in water, a high absorption efficiency can be achieved by increa- the liquid/gas ratio. The spent absorbent solution may be discharged after neutralization, or hydro- chloride may be recovered from it.	asing on ogen	
	Absorption with Alkali	A caustic soda solution or a slurry of slaked lim used as the absorbent when an especially high absorption efficiency is required. Reaction formulae : NaOH + HCl = NaCl + H ₂ O Ca(OH) ₂ + 2HCl = CaCl ₂ + 2H ₂ O	ne is	

Theory of gas absorption

<Double film thoery>

Two boundary film :Vapor side and liquid side, to reduce diffusion velosity

- Gas phase film coefficient of mass k_G
- Liquid phase film coefficient of mass k_L

Driving force of diffusion:

difference of pressure and concentration

< Film coefficient of mass and Total coefficient of mass>

Gas phase diffusion velocity = Liquid phase diffusion velocity NA: Mass transfer amount by unit time

 $N_A = k_G(p-p_i) = k_L(C_i-C)$ (Stable condition, mass transfer amount)

 $N_A = K_G(p-p_i) = K_L(C_i-C)$ (Alternate with total coefficient of mass)

 $k_{G} \& k_{L}$: impossible to measure

→ alternate with Gas phase total coefficient of mass K_G and Liquid phase total coefficient of mass K_L

Types of absorption towers (1/6) Liquid dispersion type

Packed tower

Turbulent contact absorber

Cross contact flow type

Weted-wall tower

Types of absorption towers (5/6) Gas dispersion type

Bubble cap column

Perforated plate column

Types of absorption towers (6/6)

Gas dispersion type

··· CONTENTS ···

- 1. Basic theory of pollutant diffusion and their affection
- 2. Monitoring of pollutants and simulation of their diffusion
- 3. Characteristics of fuel and sources of pollutants
- 4. Emission coefficient of SOx and its removal
- 5. Emission coefficient of Nox and its reduction methods
- 6. Dust collection method (Electrostatic precipitator)
- 7. Hazardous gas treatment
- 8. Absorption methods
- 9. Adsorption methods

Adsorption with activated carbon

Activated carbon recycle process

Pressure swing process

Thank you for your attention !!

