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Technological advancements in data collection, data processing, analytical proce-

dures, and geographic information systems (GIS) facilitate the use of spatially

explicit data for modeling landscape-level wildlife-habitat relationships (Larson

et al., this volume; Roloff et al., this volume). Correspondingly, there is a variety

of software programs that may be used to model wildlife-habitat relationships.

These programs include species presence or probability of occurrence models

such as BIOCLIM (Busby 1991), HABITAT (Walker and Cocks 1991), DOMAIN

(Carpenter et al. 1993), and BIOMAPPER (Hirzel et al. 2002, 2006). Carpenter
et al. (1993), Guisan and Zimmermann (2000), and Hirzel and Arlettaz (2003)

reviewed or discussed differences among these programs. An important distinc-

tion is made between classification-based approaches (e.g., BIOCLIM, HABITAT)

that describe the extent of a species distribution (i.e., niche) based on species’

presence-absence information versus multivariate, distance-based approaches

that describe both the extent and probability of species occurrence within that

extent (e.g., DOMAIN, BIOMAPPER). Habitat Suitability Index (HSI) models pro-

vide an alternative approach that quantifies habitat quality, as opposed to species
presence or probability of occurrence directly. The suitability relationships may

be defined by empirical data, literature review, or expert opinion, or a combina-

tion of these. Software programs for HSI models include Landscape Scripting Lan-

guage (Kushneriuk and Rempel 2007), Landscape HSImodels (Dijak et al. 2007),

and VVF (Ortigosa et al. 2000). Also, HSI models have been developed directly

within GIS software (Nichols et al. 2000, Juntti and Rumble 2006, Tirpak et al.

2007). Additionally, RAMAS GIS (Akçakaya 1998) provides the means to link

wildlife demographic response (i.e., population viability and metapopulation
dynamics) to habitat suitability (e.g., Larson et al. 2004; Bekessy et al., this vol-

ume). Regardless of which program is used, the goals are similar: to quantify

wildlife response in terms of the quality, quantity, or spatial structure of habitat.
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Roloff et al. (this volume) discussed some of the issues related to the use of GIS to

model landscape-level wildlife habitat. In this chapter, we continue the discus-

sion in the context of habitat suitability model development and application to

large landscapes. We refer readers to Beissinger et al. (this volume) and Akçakaya

et al. (this volume) for extension of HSI models to viability modeling. We begin

with an overview of HSI models and HSI model development, discuss emerging

issues regarding data availability and populating landscapes from different data

sources, and conclude with a case study that illustrates the use of Landscape
HSImodels software to the Hoosier National Forest, Indiana.
HSI MODELS
Habitat Suitability Index modeling is an outgrowth of the Habitat Evaluation

Procedures (HEPs) developed during the early 1980s (U.S. Fish and Wildlife Ser-

vice 1980, 1981). The purpose of HSI models is to numerically quantify wildlife

habitat quality. In their original form, HSI models were based on measurements
of habitat components at a local scale, which were numerically scored (e.g.,

suitability indices) and combined into an overall habitat suitability value for

selected wildlife species. Collection of detailed local scale information becomes

impractical when evaluating habitat at the landscape scale. Surrogates of

local scale habitat components may be utilized to provide information about

habitat components at the landscape scale. In addition, spatial relationships

of habitat components such as area sensitivity, edge sensitivity, the intersper-

sion and quantity of life requisite habitats, and distance to resource become
important when modeling wildlife-habitat relationships at the landscape scale

(Morrison et al. 1998).

As with anymodeling endeavor, the development of HSI models is best accom-

plished when following an established protocol that outlines the philosophy,

assumptions, data sources, analytical approaches, validation procedures, and

appropriate applications for the models. The philosophy underlying HSI models

is that each species requires a distinctive set of physical environmental factors

used for survival and reproduction (e.g., habitat; Block and Brennan 1993). In its
most general sense, these factors include food, cover, and, in the case of birds, nest

locations for reproduction (Hildén 1965). Often, these environmental factors are

associated with specific vegetative communities (e.g., habitat types) and with

increasing level of detail, to vegetation structure, species composition, and vege-

tation age or succession stage. Habitat Suitability Index models hypothesize a

functional relationship between the quantity of a resource and its suitability value

(or quality). The value of each of these suitability indices (SIs) range from 0 (low

or nonsuitable habitat) to 1 (highly suitable) for a specific resource attribute.
A composite HSI value is formed by combining multiple SIs in an HSI equation.

Increasingly, HSI models are being developed and applied within a spatial

framework (Roseberry and Woolf 1998; Juntti and Rumble 2006; Dijak et al.

2007; Tirpak et al. 2007; Fitzgerald et al., this volume). The application of HSI
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models to large geographic areas, use of landscape-level data sources, and inclu-

sion of spatial attributes of wildlife-habitat relationships facilitates the transition

away from field-based, measurement-intensive HSI models. Large-scale HSI mod-

els have a variety of uses, from facilitating evaluation of alternative management

strategies in the development of a natural resource management plan (see fol-

lowing description), to identification of priority areas for management activities,

and estimation of population viability (Larson et al. 2004). We acknowledge that

large-scale HSI models are not immune to some challenges. For example, popu-
lation density is sometimes used as a surrogate for habitat quality, and some HSI

model validations use density as a measure of habitat quality (Duncan et al.

1995, Breininger et al. 1998, Kroll and Haufler 2006). Because HSI models do

not account for intra- or inter-specific interactions such as competition and pre-

dation, behavioral responses to changes in resource conditions (i.e., changes in

space use, movements, or resource selection), nor the error associated with the

HSI value (Van Horne 1983, Roloff and Kernohan 1999, Morrison et al. 2006),

interpretation and validation of HSI models can be difficult for some species
(Shifley et al., this volume). Despite these concerns, the relatively simple concep-

tual framework of HSI models, availability of GIS data layers, and use of output

maps as visual aids elevate the utility of large-scale HSI models and may enhance

communication between managers, planners, biologists, and stakeholders.
MODEL DEVELOPMENT
Suitability, Abundance, or Viability?
The first consideration when developing large-scale HSI models is to state the

model assumptions. HSI models predict habitat suitability, which is generally

assumed to be related to probability of occurrence, population density, or pop-

ulation viability. In other words, habitat with a high suitability value will have

high population density or maintain viable wildlife populations. The degree to

which this assumption is met can depend on intra- and inter-specific interac-

tions such as competition and predation, seasonal differences in habitat use,
and temporal unpredictability in resource distribution or abundance; these fac-

tors affect whether abundance is an indicator of viability (Van Horne 1983).

Habitat suitability models might also not predict abundance well if regional

populations exist well below carrying capacity—that is, if habitat is not limiting.

For some species it may be possible to incorporate SIs that explicitly address fac-

tors influencing population density or viability. For many species, however, we

lack the empirical data or knowledge to support such relationships. When such

information is available, an additional consideration is whether or not to mix fac-
tors by including suitability relationships for different types of demographic

responses. For example, models designed to predict habitat suitability for breed-

ing birds may contain suitability relationships for factors influencing territory

density (e.g., patch area) as well as factors affecting nest success (e.g., distance
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to edge) (Rittenhouse et al. 2007). Habitat Suitability Index models for habitat

specialists (e.g., yellow-breasted chat [Icteris virens]) may perform better than

HSI models for habitat generalists (e.g., wood thrush [Hylocichla mustelina]),

particularly when the same factors influence density and nest success

(Rittenhouse 2008). If HSI models contain suitability relationships for different

types of demographic responses, the most appropriate use of the models may

be as indicators of probability of occurrence as opposed to specific demo-

graphic response(s). We recommend adherence to the most basic assumptions
of HSI models: (1) Habitat influences animal distributions; (2) HSI models pre-

dict habitat suitability (not occurrence or abundance); and (3) all significant

habitat variables are included in the model.
Geographic Extent
The second consideration when developing large-scale HSI models is to explicitly

define the purpose of the model and the geographic extent of application. Pro-
bably the most common purpose of HSI models for avian species is to evaluate

breeding habitat suitability, since it is the most studied portion of the avian life

cycle. However, many migratory avian species have spatially distinct breeding,

migration, and over-wintering habitat that span multiple ecoregional domains

(Bailey 1983). For these species, we recommend using an ecoregional classifica-

tion system such as Bailey (1983, 1996) to establish the geographic area for model

application. For example, we developed our large-scale HSI models to predict

breeding habitat suitability for the Central Hardwoods Region (Rittenhouse et al.
2007), which we defined as the Hot Continental Division (220) located within

the Humid Temperate Domain, excluding the mountainous portions (M220),

and including the eastern portion of the Prairie Division (250; Bailey 1996). The

forested areas within the Central Hardwoods Region contain primarily oak

(Quercus spp.) and hickory (Carya spp.), with somemaple (Acer spp.) and beech

(Fagus spp.), and lesser amounts of pine (Pinus spp.) and cedar ( Juniperus

virginiana). This definition restricts the application of our models to the area

defined; application to other regions should not occur without modification to
site-specific conditions.
Spatial Grain and Extent
The third consideration is to define the spatial scale of model application. Spa-

tial scale has two attributes: grain and extent. Grain defines the lower limit of

resolution for the landscape map and is often synonymous with patch or cell

size (Wiens 1989). Typically, grain is established by the size of the cells in the
available GIS layers, such as the digital elevation model (DEM) or land cover

type. The concept of grain may also be used in a biological context. For exam-

ple, biological grain may be defined as the resolution at which an animal per-

ceives and responds to habitat cues. In large-scale HSI models, biological grain
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is often expressed at the size of the average home range; however, biological

grain may range from micro-habitat to a forest stand to a landscape depending

on the habitat cue. Spatial extent refers to the size and location of the study area

or landscape (Wiens 1989).

We define large-scale HSI models as those applicable to landscapes >1000 ha

in size. Often, the goal is to apply large-scale HSI models to landscapes with high

resolution (e.g., small cell size) across large spatial extents. To do this, one needs

to define life requisites at multiple spatial scales within a GIS. The ability to do
this for a given species is often limited by the data available.
Data Sources
Habitat Suitability Index models are relatively unique among modeling

approaches in that they use both empirical data, existing knowledge (based on

literature review), and expert opinion. Expert opinion may be invaluable for

species with limited empirical data or to describe complex relationships. While
expert opinion has great utility, it may be difficult to quantify. For example, many

experts and some empirical data support the importance of canopy gaps for

cerulean warblers (Dendroica cerulea; Burhans et al. 2001). When translating

the importance of canopy gaps into a suitability relationship, one needs not only

to quantify this relationship in terms of the size, distribution (i.e., random,

clumped), density, or position of gaps on the landscape (e.g., bottomland gaps

versus upland gaps), but also to associate some metric of cerulean warbler

response to canopy gaps (e.g., nest success, population density, or survival dur-
ing the breeding season). The key is quantifying the resource in terms of its

attributes—size, area, quantity, density, age, type, and distribution—and have

some metric of animal response to the resource (i.e., demographic, resource

use, movements/space use). The transition from a purely qualitative relationship

to a quantitative one not only improves the suitability relationship and overall

HSI, but also identifies data needs and directions for future studies.

Ideally, empirical data would be available from multiple studies across the

geographic extent of interest at multiple spatial scales that affect habitat quality.
Literature searches are valuable for identifying data sources, key habitat relation-

ships (factors), and the form of the suitability response (e.g., linear or nonlinear).

The context of a study is important: The study design, methods, and analysis

should be appropriate for the intended application. One should not assume that

the conclusions made from studies conducted at a particular spatial scale are

applicable to relationships expressed at a different spatial scale (McCarty et al.

1956). Landscape-level data are often limiting because most empirical studies

have been conducted at high resolution for small geographic extents (e.g.,
micro-habitat or patch-level studies). The strength of the suitability relationship

may be improved if it is based on studies conducted at multiple spatial scales

or replicated at a single scale across multiple habitat types, study sites, or ecore-

gions. Another consideration when evaluating empirical data is whether the
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study was experimental or correlative. Experimental studies are optimal because

they can identify the specific mechanisms underlying wildlife-habitat relation-

ships; however, correlative studies are valuable when conducted across habitat

gradients.
Suitability Functions
Habitat type and structure.—Landscape-scale HSI models will generally have an
SI that is based on a species preference for a habitat type. Habitat types are often

inferred from land cover or land use data, classified aerial photography, or stand

inventory data where available. For forest species this often includes knowledge

of the suitability of tree species, tree species groups (e.g., red oaks, white oaks,

pine/cedar, and maple) or forest land cover type (e.g., deciduous, coniferous,

mixed). We usually begin HSI models for forest species with an SI that identifies

tree species, species groups, forest type, or land cover type associations (Larson

et al. 2003, Rittenhouse et al. 2007). For example, we evaluate the dominant
tree species (group) for each cell on the landscape and assign SI = 1.0 if the cell

contains the resource or SI = 0.0 if it does not. We also typically incorporate suc-

cessional stage, tree size, or age class, as an indicator of structure, in a second SI

or in combination with tree species in the first SI. These functions establish the

maximum extent and quantity of potentially suitable habitat.

Area sensitivity.—Additional SIs may be incorporated to address spatial rela-

tionships such as area or edge sensitivity, or the composition of habitat within a

specified area (e.g., average home range size). Many avian species are consid-
ered area sensitive, meaning that a minimum area of contiguous habitat is

required before occupancy or breeding occurs. We estimate an SI for area sensi-

tivity using a patch-definition algorithm (Larson et al. 2003, Dijak et al. 2007,

Rittenhouse et al. 2007). Prior to applying the algorithm, we assigned suitability

based on tree age, tree species, ecological land type, or land cover type as

described previously. We used the patch-definition algorithm to join adjacent

(i.e., horizontal, vertical, or diagonal) cells of suitable habitat. We then used an

SI to assign values to cells based on the size of the habitat patch formed by
aggregation. We determined the suitability value by plotting probability of occu-

pancy, density, or nest success on the y-axis and patch size on the x-axis. We

assigned the maximum suitability value (SI = 1.0) to the patches with the high-

est occupancy, density, or nest success and rescaled the y-axis to range from

0 to 1. We assigned the minimum suitability value (SI = 0.0) to patches equal

to the cell size (e.g., 0.09 ha for 30 m � 30 m cells) or the minimum patch size

at which occupancy, density, or nest success is nonzero. The form of the func-

tion depends on the species response and may be linear or nonlinear. We fit a
logistic function to the suitability by patch size data and assigned suitability to

all patches using this function.

Distance.—The distance to resources can have a positive or negative effect on

habitat quality. For example, bats need water within their home range in order to

survive, and roost sites are often clustered around water holes (Adams and
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Thibault 2006). As the distance to water increases, the energy expended to utilize

the resource increases and the quality of the habitat declines. For black bears

(Ursus americanus), habitat quality increases as distance from roads increases

(Tietje and Ruff 1983). This relationship could be expressed as habitat within

200 m of a road has a value of 0. Between 200 m and 1000 m habitat would gradu-

ally increase as expressed by the formula 0.00125 * DISTANCE – 0.25 and habitat

greater than 1000 m from a road is assigned a value of 1.0 (Larson et al. 2003).

Edge effects.—Another common spatial relationship is edge sensitivity. Edge
sensitivity varies by the type of edge and species’ response to edges. We define

habitat edges as a change in land cover type (e.g., forest to grassland) or tree age

and its associated structure (e.g., early successional forest to mature forest). Spe-

cies response to edges may be positive if different habitat types are used to meet

life requisites. For example, in the Central Hardwoods Region, northern bob-

whites (Colinus virginianus) nest in grasslands, forage in croplands, and use

woody edges for escape cover (Stoddard 1931, Roseberry and Klimstra 1984,

Roseberry and Sudkamp 1998, Williams et al. 2001). Suitable habitat contains
all three habitat types within a biologically relevant area, such as the average

bobwhite home range size. Species response to edges may be negative if the

edge decreases the probability of occupancy, survival, or nest success.

A moving window approach can be used to model edge effects. The size of

the neighborhood of cells represents the distance to which an edge effect pene-

trates the interior of a habitat. For example, if we have a 5 cell � 5 cell circular

moving window and the raster cells are 30 m � 30 m resolution, the edge effect

would extend a distance of 60 m, the maximum distance any cell in the neigh-
borhood is away from the center cell. If any of the cells within the moving win-

dow create an edge that increases or decreases the value of the habitat

represented by the center cell, the center cell value of the SI would be assigned

the increase or decrease in habitat quality.

Landscape composition.—We quantify the landscape context through a

more computationally and data-intensive approach. We compute the percent

of a particular cover type (i.e., forest) within a moving window (Larson et al.

2003, Dijak et al. 2007, Rittenhouse et al. 2007). A moving window approach
requires knowledge of habitat quality as a function of percent cover type and

the effective landscape size in which to evaluate the percent cover type. The

size of the moving window may be based on the biology of the species (e.g.,

maximum dispersal or movement distance) or a large value based on landscape

size or attributes needed to support a population (e.g., 1, 5, or 10 km).

Landscape composition is the relative amount of individual habitat compo-

nents found within a biologically relevant area, such as an animal’s home range.

The habitat components must be available in the correct proportions within the
specified area to achieve optimal habitat. As the proportions deviate from the

ideal, habitat quality declines. We use a circular moving window to process por-

tions of the landscape equal in size to a typical home range for a species as the

area within which habitat composition would be evaluated (Fig. 14-1). The

moving window for a raster cell operates by evaluating the neighboring cells
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FIG. 14-1

Habitat composition determined through the use of a circular moving window. Numbers

represent one of four habitats located at each raster cell. Composition of this window is 0.43

habitat 1, 0.28 habitat 2, 0.28 habitat 3, and 0.00 habitat 4.
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within a given area, in this case the area of a home range, and calculates the pro-

portion of the neighboring cells for each habitat. These proportions are then
compared to proportions thought to provide the best habitat, and an SI value

determined from the comparison is then assigned to the center cell and the pro-

cess continues by moving to the next adjoining cell and repeating the process.

Optimum landscape composition receive a value of 1.0, and values decline as

composition deviates from the optimum. In the example shown in Table 14-1,
bitat Composition Table for Two Habitat Components, A and B. Axes Represent the

rtions of Habitats A and B. Table Values are the Suitability Index Values Resulting

Between the Observed and Ideal Compositions of Habitats A and B. Optimum

be Achieved with Observed Proportion of A at 0.2 and Proportion of B at 0.8

Proportion of Habitat Component A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

00 0.27 0.30 0.27 0.24 0.21 0.18 0.15 0.12 0.09

00 0.36 0.40 0.36 0.32 0.28 0.24 0.20 0.16

00 0.45 0.50 0.45 0.40 0.35 0.30 0.25

00 0.54 0.60 0.54 0.48 0.42 0.36

00 0.63 0.70 0.63 0.56 0.49

00 0.72 0.80 0.72 0.64

00 0.81 0.90 0.81

00 0.90 1.00

00 0.81

00
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the optimum composition would be 20% component A and 80% component B.

The values derived for the table values not equal to 0 use the equation (1-|opti-

mum proportion A – observed proportion A|) * (1-|optimum proportion B –

observed proportion B|). Both habitat components must be present to be consid-

ered suitable habitat, so if the proportion of either component equals 0,

the composition is equal to 0. If the decline in habitat quality is thought to bemore

severe as the proportions deviate from the ideal, one or both terms can be squared

or cubed. Other formulas are possible including the geometric or arithmetic mean
of the two terms.
INPUT DATA LAYERS
Various data layers are used to provide information on landscape characteristics

such as landform, land cover, and DEMs, which are important in defining habitat

suitability. A basic landform map (Fig. 14-2) can be derived from a DEM using a

topographic position index ( Jenness 2006, Tirpak et al. 2007). Topographic

position index is calculated as the elevation of a particular cell minus the mean

elevation of cells in a moving window neighborhood divided by the standard
deviation of the mean cell elevation within the window. Slope and aspect layers

are created from the DEM. The slope layer and two moving windows of differ-

ent sizes representing a large and small scale are used to evaluate a cell’s eleva-

tion compared to the large-scale variation and small-scale variation in elevation

to define landform classes. Decision rules (Table 14-2) provide an example of

how different landform classes are determined. Landform in some instances

can be used to identify ecological land types (ELTs; Van Kley 1994).

Input layers that we commonly use for forest species include a general land
cover map (i.e., forest, croplands, water, etc.), a landform map (i.e., ridge, bot-

tomlands, etc.), a dominant tree species map (i.e., white oak, maple, etc.),

and a dominant tree age class map. Age class maps can be replaced with maps

defining areas of similar forest structure if age classes are unavailable. Land

cover maps are available from a variety of sources. The national land cover data

(NLCD) map provides land cover based on classified satellite imagery with a res-

olution of 30 m that spans the United States. Many states have developed their

own land cover classification as part of the national Geographic Approach to
Planning for Biological Diversity (GAP) project. Some states have classified satel-

lite imagery from the National Agriculture Statistics Service (NASS). Most states

have National Aerial Imagery Program (NAIP) data that can be used as the basis

to digitize land cover layers for smaller regions of interest. These land cover data

layers offer general land cover classes that can be the foundation of land cover

data used in HSI modeling.

The land cover data can be augmented with data from Forest Inventory and

Analysis (FIA) data (Miles et al. 2001) and landform data to create spatially repre-
sentative forest type maps, forest species composition maps, and forest age class
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Map of landforms created using topographic position index calculated from a digital

elevation map.

376 CHAPTER 14 Landscape-Scale Habitat Suitability Models
maps. These maps will not be spatially accurate (i.e., placing a tree of specific age

and species on an exact point in the landscape) but will be spatially representa-

tive of forests within a region. Tree species and age maps are created using land

cover maps to separate forested lands from nonforested lands. If information in
the land cover maps also separates deciduous, coniferous, and mixed forests,

location of forest types within those land covers becomes more spatially repre-

sentative of the true condition. The land cover data are combined with landform

data to create patches representing the different combinations of forest land

covers and landforms. These patches are surrogates for forest stands. Forest

Inventory Analysis data from each state is broken up into geographic regions



Table 14-2 Criteria used to Assign Landform Classes for Landscape-Scale Habitat Suitability

Models Based on Topographic Position Index

Topographic Position Index (TPI)

Landform
240 m Radius
Window

750 m Radius
Window % slope Aspect

Bottomland TPI < 1 SD TPI � –1 SD

Upland

drainage

TPI � –1 SD –1 SD < TPI

S&W slopes –1 SD < TPI < 1 SD –1 SD < TPI < 1 SD slope > 5% 135 > aspect < 315

N&E slopes –1 SD < TPI < 1 SD –1 SD < TPI < 1 SD slope > 5% 135 � aspect � 315

Ridges –1 SD < TPI –1 SD < TPI slope � 5%

Ridges TPI � 1 SD
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called units; FIA data should be used from the unit that corresponds to the geo-
graphic extent of the landscape being created. Forest Inventory Analysis data

for the unit is summarized to represent the proportions of forest types and age

classes by landform and forest land cover (deciduous, coniferous, etc.). Forest

Inventory Analysis age classes are converted to size classes, and a forest type

and forest size class are randomly assigned to each patch based on the proportions

of forest types and size classes found in the FIA data. The next step is to create the

tree species and tree age maps. All subplots are pooled for each combination of

landform, forest type, and size class plots. Subplots are assigned to a raster cell
based on the raster cells’ landform, forest type, and size class. The subplot data

contain the list of tree species and diameters found on the subplot. The tree dia-

meters are converted to tree ages, and the dominant tree species and age are

assigned to cells in the dominant tree species and age maps. Though this process

is tedious, it retains the patchy nature of forest stands by first assigning forest types

and size class but includes the heterogeneity of species and age classes found

within forest stands.

Another source of base map information is forest stand inventory data col-
lected by national and state forests. These inventory data layers provide informa-

tion about the forest type, forest structure, size class, and/or age of forest stands

within sampling areas within a state. Using FIA subplot data and a land form data

layer as in our previous example, one can create tree composition data layers

that reflect the tree species and ages of trees typical to the forest stands. Similar

methods of assigning forest structure parameters from FIA to forest patches are

discussed by Tirpak et al. (2007).

The methods discussed in the preceding paragraphs describe ways to
develop spatially representative data layers of forest tree species and structure.
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Advancements are being made to directly measure these landscape attributes to

create spatially exact rather than spatially representative landscapes.

Light Detection and Ranging (LiDAR) technology is leading the way in

providing direct structural measurement of forests from remotely sensed tech-

nology. Forest structure has been shown to be important to a variety of species

of birds (MacArthur and MacArthur 1961, James 1971, Rotenberry and Wiens

1980). LiDAR uses a pulsed laser beam emitted from an airplane or helicopter

flying a specified route. The time it takes the light beam to reflect back to the
aircraft can be used to determine the elevation of an object on the ground. Light

beams that pierce the canopy and reflect from the ground are used to determine

surface elevation. LiDAR data are often collected at submeter resolution and can

have a vertical accuracy of 15 cm. Forest structure such as mean tree canopy

height, dominant tree height, mean diameter, stem number, basal area, timber

volume (Naesset 2002), canopy density (Lefsky et al. 1999, Maier et al. 2006),

and quadratic mean canopy height (Lefsky et al. 1999) can be calculated from

LiDAR in certain forest types. As the costs of acquiring LiDAR declines and the
potential of the data to solve questions increases, LiDAR is becoming an essen-

tial data layer in many projects. For example, the U.S. Army Corps of Engineers

and the U.S. Natural Resources Conservation Service are in the process of

acquiring 2900 square miles of LiDAR data along the Missouri River for prelimi-

nary design of agricultural practices such as terracing, grade stabilization, and

vegetative condition. It is expected that the data will enable them to perform

detailed land cover mapping and vegetative species identification along the

flood plain. Similar acquisitions of data are occurring across the United States.
In an effort to expand the availability and utilization of LiDAR, the first U.S.

National LiDAR Initiative meeting was held in February 2007 in Reston, Virginia.

Advancements are also being made in image classification of remotely sensed

data for nondiscrete habitat classes. For example, texture analysis allows for the

classification of habitats where there is high structural diversity but little distinct

change from one habitat type to the next, such as what might occur in semi-arid

regions and grasslands. The process evaluates more than the values of an indi-

vidual raster cell. It bases the classification on repeated patterns occurring in
a ne ighborho od of raster cells. Text ure is define d by Hawkins (1969, p. 347)

as (1) “some local ‘order’ is repeated over a region, which is large in comparison

to the order’s size”; (2) “the order consists in a nonrandom arrangement of ele-

mentary parts”; and (3) “the parts are roughly uniform entities having approxi-

mately the same dimensions everywhere within the textured region.” For other

definitions of texture and methods to determine texture, see Haralick et al.

(1973 ) and Tucer yan and Jain (19 98). Applicati ons of image textur e analysis

include predicting avian species richness (Hepinstall and Sader 1997, Knick
and Rotenberry 2000, St-Louis et al. 2006) and mapping nesting habitat (Pasher

et al. 2007).

Software has been developed to perform object-oriented classification of

imagery and LiDAR data including textured areas through a process known as
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segmentation. One such software, Definiens eCognition software (Definiens

2003), has been used to classify satellite and LiDAR data simultaneously to cre-

ate land cover polygons of agricultural lands (Manakos et al. 2000). Their

object-oriented classification outperformed the traditional ISODATA pixel classi-

fication approach. Levick and Rogers (2006) used object-oriented classification

of color aerial photography and LiDAR data to monitor the spatio-temporal

changes of savanna woody vegetation in Kruger Park, South Africa.
HSI EQUATIONS
An HSI value is a combination of individual SIs. The functional response by a

species to a resource attribute can take many forms, but the most commonly

used form for SIs is a linear relationship. More complex forms may be appropri-

ate when supported by empirical data or expert opinion. These include sig-
moid, exponential, and piecewise-regression functions. We recommend using

a sigmoid function when there is uncertainty about the endpoints of the

hypothesized relationship. Piecewise regression may be used to estimate the

breakpoints (i.e., thresholds) of nonlinear suitability relationships, such as a spe-

cies’ response to edge effects (Toms and Lesperance 2003). However, these

equations are data hungry and computationally intensive.

The form of the HSI equation varies depending on whether an SI represents

a critical or limiting resource, or modifies a resource based on a spatial attribute
such as size, proximity to edge, or composition. We used geometric, arithmetic,

and logical relationships to calculate HSI scores depending on the number and

type of species’ life requisites (Larson et al. 2003, Dijak et al. 2007, Rittenhouse

et al. 2007). We used a geometric mean when all habitat characteristics were

necessary for habitat suitability:

HSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI1 � SI2 � SI3

3
p

:

With a geometric mean, the HSI value is zero if any suitability index is zero. We

used an arithmetic mean when habitat characteristics were substitutable. In

other words, the HSI value is greater than zero when at least one SI is nonzero.

Suitability indexes may be included as modifiers to decrease habitat quality.

For example, we included an SI for fire in our worm-eating warbler (Helmitheros

vermivorum) HSI model (Rittenhouse et al. 2007). The final habitat suitability
value was the geometric mean of deciduous habitat (SI1), tree age by ELT (SI2),

and deciduous patch size (SI3), multiplied by SI4 to account for reduced suitability

due to fire:

HSI ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI1 � SI2 � SI3

3
p

Þ � SI4:

Logical relationships are useful when a species’ life requisites cannot occur in a

single cell. Recall the northern bobwhite example earlier, where bobwhites use

woody edges for escape cover, grasslands for nesting, and croplands for forage.
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In this situation, the suitability value of a given cell represents only one of the

life requisites. We used a maximum function to identify the greatest contribu-

tion to habitat suitability among the three requisites (Rittenhouse et al. 2007).

The final habitat suitability value was the sum of (1) the maximum value of

grassland (SI1), cropland (SI2), and woody cover (SI3); and (2) the product of

habitat composition (SI4) and a modifier to reduce the suitability of roads and

urban areas within the moving window for habitat composition (SI5):

HSI ¼ MaximumðMaximumðSI1; SI2Þ; SI3Þ þ ðSI4 � SI5Þ:
We used an additive HSI equation instead of a geometric mean because we

recognized that grassland, cropland, or woody cover provided bobwhite habitat;

however, the highest suitability value occurred when at least two of the three
habitat types were present within a bobwhite’s home range. Alternatively, a min-

imum function can be used when a suitability index represents a limiting factor.
LANDSCAPE HSImodels SOFTWARE
We developed Landscape HSImodels software (Dijak et al., 2007) to provide a

user-friendly interface to evaluate the spatial relationships of wildlife habitat at

the landscape scale. Version 2.1.1 contains models for 21 species of wildlife,

including American woodcock (Scolopax minor), black bear, bobcat (Lynx

rufus), cerulean warbler, eastern wild turkey (Meleagris gallopovo silvestris),

gray squirrel (Sciurus carolinensis), Henslow’s sparrow (Ammodramus henslo-

wii), hooded warbler (Wilsonia citrina), Indiana bat (Myotis sodalis), northern

bobwhite, northern long-eared bat (Myotis septentrionalis), ovenbird (Seiurus
aurocapilla), pine warbler (Dendroica pinus), prairie warbler (Dendroica dis-

color), red bat (Lasiurus borealis), ruffed grouse (Bonasa umbellus), southern

redback salamander (Plethodon serratus), Timber rattlesnake (Crotalus horri-

dus), wood thrush, worm-eating warbler, and yellow-breasted chat. A generic

model is also included so that suitability relationships from different species

models can be recombined into models for a species not represented in the soft-

ware. We created models using literature review, expert opinion, and from pre-

vious local-scal e models (see Lar son et al. [2003] and Rittenho use et al. [2007] ).
Each species model contains an interface that guides the user through the calcu-

lation of each SI (Fig. 14-3). The individual SIs are combined into an overall HSI

by an equation specified by the user (Fig. 14-3). All models come with default

parameters and equations developed for the Central Hardwoods Region of the

United States (Larson et al. 2003, Rittenhouse et al. 2007) but can be modified

to fit habitat relationships that occur in other parts of a species range.

Input and output data formats are ASCII rasters, which may be created in

ArcView 3.x by exporting a data source, in ArcGIS using ArcToolBox, and in
ArcInfo by issuing the gridascii command. ASCII rasters created in other GIS

software packages need to follow the Environmental Systems Research Institute

(ESRI, Redlands, California, USA) format for header lines (ESRI, ArcGIS, ArcView,



FIG. 14-3

Examples of the Indiana bat model in Landscape HSImodels software. The top window is a

map of tree age (light green for young forest and dark green for older forest) and the resulting

suitability index values ranging from light yellow (SI 1 = 0.0) to dark red (SI 1 = 1.0). The lower

window is a map of the overall Habitat Suitability Index (lower, left map) and four suitability index

maps.
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ArcToolBox, ArcInfo are trademarks, registered trademarks, or service marks of

ESRI in the United States, the European Community, or certain other jurisdic-

tions, Environmental Services Research Institute, Redlands, California, USA).

Input layers as well as SI and HSI layers are displayed as the user works through

the model. All SI and HSI layers can be exported from the software and

imported back into GIS software for further analysis.

The minimum computer system recommended is a PC with a 1.7 gigahertz

(GHz) processor and 500 megabytes of random access memory (RAM). We also
recommend using a 17-inch or larger monitor. Computers with faster processors

and more RAM will reduce model processing time. A computer with the above

configuration was successfully used to process a 1200 row by 1200 column

landscape. A landscape with 2000 rows and 3000 columns was modeled on a

computer with a 3.0 GHz processor and 2 gigabytes of RAM. The maximum size

of a landscape that can be processed will vary from model to model based on

the number of individual suitability indices incorporated into the model and

the complexity of the calculations that need to be processed within the model.
Models using large moving windows on large landscapes take several hours to

complete. The limitation in landscape size is controlled by the amount of

RAM the operating system is capable of utilizing. At the time of this printing,

none of the HSI models have been validated, and the authors recognize the

importance of validation. The software has been applied to districts of the

Hoosier and Mark Twain National Forests (Shifley et al. 2006).
HOOSIER NATIONAL FOREST CASE STUDY
Working cooperatively with the personnel of the Hoosier National Forest (HNF)
(Fig. 14-4), and in support of the HNFmanagement plan, we applied LandscapeHSI-

models to five proposed forest management plan alternatives. Alternative 1 was the

current plan andwasmostly focused on uneven-agedmanagement using single tree

and group selection harvesting of timber with only a small percentage of the forest

being harvested per decade. Alternative 2 had no harvesting, no maintenance of

openings, and no prescribed burning. Alternative 3 had greater levels of uneven-

agedmanagement than alternative 1 and included amoderate amount of prescribed

burning. Alternative 4 had even-aged management and a high level of prescribed
burning. Alternative 5 was similar to alternative 1 but provided for a focal area that

used even-aged management to provide for wildlife species needing early succes-

sional forest. Alternatives 3 and 4 also included this focal area for early successional

species. The alternative plans were first modeled through LANDIS, a forest land-

scape simulation model (Mladenoff et al. 1996, He et al. 1999, Mladenoff and He

1999) that applies forest management practices and natural disturbance to current

conditions to produce maps of future forest age class patterns and forest species

composition. Methods similar to those described above were used to build input
layers for LANDIS with the exception that multiple species and age cohorts were



FIG. 14-4

Hoosier National Forest (outlined in black) located in south central Indiana, USA. Dark gray

depicts forested; and light gray, nonforested areas of the state.
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assigned to each cell of the current condition map, since LANDIS uses this informa-

tion in forecasting future forest landscapes. Landscapes were modeled at 10 m res-

olution representing the size of a mature tree crown so that single tree selection

harvesting could be modeled. The forest landscapeswere modeled through 15 dec-
ades of each management alternative producing sets of forest landscape maps at

each decade. LANDIS output maps were converted to ASCII rasters, and nine wild-

life models were then applied to the current conditions as well as maps forecasting

forest conditions at 10, 50, and 150 years of age.

We modeled the effects of alternatives on American woodcock, cerulean

warbler, Henslow’s sparrow, Indiana bat, northern bobwhite, ruffed grouse,

wood thrush, worm-eating warbler, and yellow-breasted chat; these repre-

sented species that were disturbance dependent, area sensitive, edge sensitive,
fire sensitive, mast dependent, game species, species dependent on specific

forest ages or structures, and species of special concern. By selecting a suite

of species that respond in different ways to varying management methods,

we were able to evaluate the trade-offs in habitats for each species. Changes

from current condition HSI values occurred over time and between competing

alternatives. Habitat Suitability Index maps (Fig. 14-5) were produced as

well as tabular summaries and charts (Fig. 14-6). Alternatives 1 and 2 did not



FIG. 14-5

Worm-eating warbler Habitat Suitability Index map for current condition on the Pleasant

Run district of the Hoosier National Forest, Indiana, USA. Values range from 0.0 (light gray) to

1.0 (dark gray).
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The proportion of the Hoosier National Forest, Indiana, USA, that falls within five different

habitat suitability classes for ruffed grouse after 50 years of forest management under five

different management alternatives.
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provide adequate habitat for American woodcock, ruffed grouse, and yellow-

breasted chat. Alternative 2 did not provide adequate habitat for Henslow’s

sparrow. Alternatives 3, 4, and 5 all provided adequate habitat in varying

degrees to all species. This information was included with the proposed

plan alternatives to provide managers and stakeholders with information

on the cumulative effects over time of all the proposed management

alternatives.
SUMMARY
Extending HSI modeling to the landscape scale allows for the evaluation of

habitat quality for larger geographic areas based on our knowledge of spatial

wildlife-habitat relationships. When used with landscape forest simulation

models, they provide a method of evaluating temporal changes, including pro-

posed management activities. Landscape-level planning and management of

populations requires knowledge of habitat quality at the landscape scale.

Suitability indices can be developed to represent habitat relationships based
on habitat type and structure and landscape patterns such as patch size, dis-

tance to features, edge effects, and landscape composition. Input layers in the

form of GIS layers can be developed from a variety of remote sensing products

or large-scale field inventories to calculate suitability index values based on land-

form, land cover, forest type or tree species, forest age class, etc. By varying the

values of SIs and varying the methods used to combine SIs into an HSI, we can

examine the effects of individual habitat components on overall habitat suitabil-

ity to help us to determine which habitat components are most lacking for a
species.

Methods of deriving landscape information and monitoring landscape

changes are improving quickly, and the availability of software such as Land-

scape HSImodels (Dijak et al. 2007) further facilitates the use of large-scale

HSI models. Better and more concise models can be developed as our knowl-

edge of habitat components increases at the landscape scale, but management

cannot and should not wait for the perfect model. We contend that applying

the best current knowledge is better than waiting until all wildlife-habitat
relationships are thoroughly defined.
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